



# Die Biene in der Forschung

Imkerverein Floridsdorf





#### Verdiente Bienenforscher

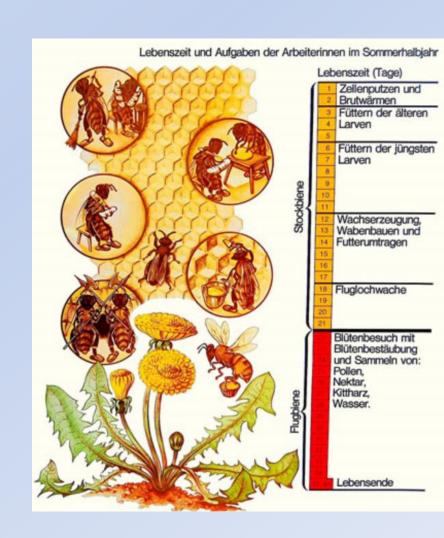
- Aristoteles, 384-322 v.Chr.
  - Erzählungen vom Schwänzeltanz
- Charles Buttler, 1560-1647
  - Wirkung des Alarmpheromon
- Anton Janscha, 1734-1773
  - Paarung mit mehreren Drohnen, Vorschwarm mit alter Königin, erste Zargenbetriebsweise
- René-Antoine Ferchault de Réaumur, 1683-1757
  - Königin nicht Regentin (Glasbeute)
- Lorenzo Langstroth, 1810-1895
  - Beespace
- Johannes Mehring, 1815-1878
  - Prägte den Begriff "Bien"
- Guido Sklenar, 1871-1953
  - Königinnenzucht

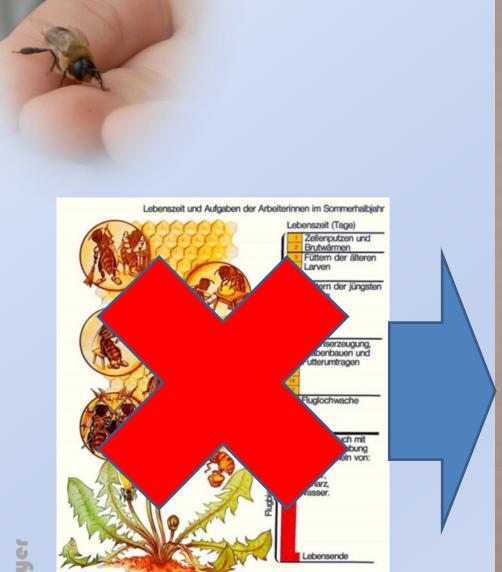
- Enoch Zander, 1873-1957
  - Geschlechtsbestimmung, Erreger der Nosemose, Bestimmung des Honigs durch Pollenanalyse
- Karl von Frisch, 1886-1982
  - Schwänzeltanz, Geruchssinn,
    Orientierungssinn
- Martin Lindauer, 1918-2008
  - Verhaltensforschung
- Randolf Menzel, 1940-
  - Kognitiven F\u00e4higkeiten
- Jürgen Tautz, 1949-
  - Verhaltensforscher, HOBOS
- Thomas Seeley, 1952-
  - Verhaltensforscher, interen Kommunikation des Bien's

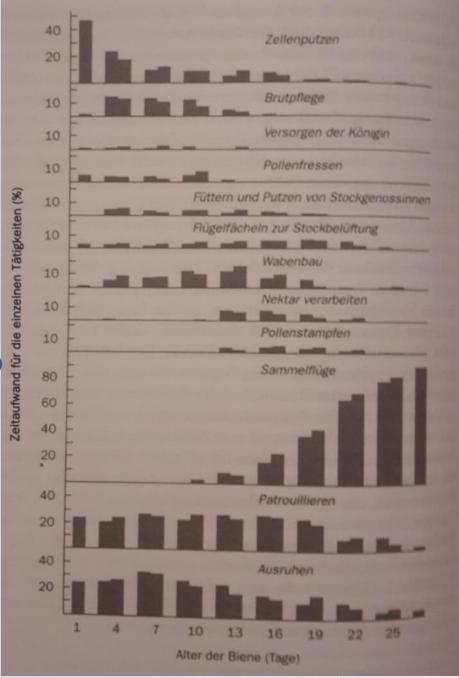


# Neue Möglichkeiten der Forscher

- Schnellere Computer
- Methodik
  - Personalisierung von einzelnen Bienen
  - Radarstation
  - Direktmessung an Neuronen
  - Einfärben von Neuronen um Veränderungen optisch zu erkennen




#### Lebenslauf

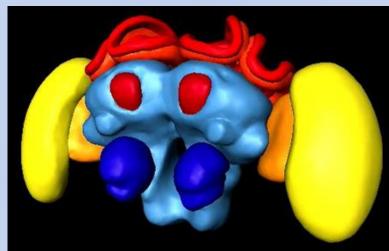
- 30-60 Tage (Sommerbiene)
- Putzbiene
- Ammenbiene der Königin
- Ammenbiene
- Baubiene
- Biene für Nektarverarbeitung
- Heizerbiene
- Wächterbiene
- Sammelbiene
- Notsituation lässt Karriereleiter überspringen
- Schwarmbienen übernehmen wieder Jungbienentätigkeiten
  - Lernen leichter
  - Leben deutlich länger







Quelle: T. Seeley 1997, "Im Mikrokosmos des Bienenstocks"







- 2% Hirnmasse (gilt auch für Bienen)
- Hirn verbraucht ca. 20% der Energie
- Biene wiegt ca. 80mg, Hirn wiegt ca. 1mg
- Tintenfisch 150x mehr Neuronen als Biene
- Mensch hat 100.000x mehr Neuronen als Biene
- Intelligenz hängt von Geschwindigkeit ab
  - Neuronendichte Biene Elefant
- Kein Schmerzempfinden? (kein Weichkörper)
  - Biene deren Hinterleib abgetrennt wird, arbeitet weiter, als ob nichts geschehen ist.

### Bienenhirn

- Schmerzreize
  - Steuerung durch Naloxon?
- Symmetrischer Aufbau
  - Lamina (nicht sichtbar) gleich hinter den Augen (grün/blau)
  - Medulla hellgelb (UV)
  - Lobula orangefärbig (Richtung, Ganzfeld)
  - Antennalloben, dunkelblau, Geruchssinn
  - Daneben Tastsinn
  - Daneben Sinn für elektrische Felder
  - Oberhalb vom Schlund werden Sehinformationen mit Sonnenkompass abgeglichen
  - Pilzkörper ähnlich wie Frontlappen der Großhirnrinde (Bewußtsein)?
    - 1850 Hyperthese franz. Zoologe Felix Dujardin







# Pilzkörper

- Eintagsfliege 5.000 Nervenzellen Biene 170.000
- Eintagsfliege 2,5% der Neuronen im Pilzkörper → Biene 17%
- Alle Seh, Riech, Tast-Signale kommen auch in den Pilzkörper
- Lernzentrum, Gedächtnis
- Versuche Ende der 60'iger Jahre
  - Gesamter Pilzkörper entfernt → Bienen laufen nur geradeaus und konnten nicht anhalten
  - Rechte oder linke Seite des Pilzkörpers entfernt → Bienen laufen im Kreis





# Belohnungs-Neuron

- VUMmx1: 1 Nervenzelle elektrisch stimuliert ersetzt Futterbelohnung
- Belohnungsneuron wirkt hauptsächlich bei unerwarteter Belohnung



#### Gedächtnis

- Langzeitgedächtnis benötigt mehrere Lernerfahrungen
- Kurzzeitgedächtnis benötigt nur eine Lernerfahrung
- Feldversuch mit k\u00fcnstlichen Futterquellen mit unterschiedlichen Nachflussgeschwindigkeiten
  - Bienen besuchten öfter schneller nachfließende
    Quellen und seltener die langsam nach fließenden



#### Kommunikation

- Symbolhafte Weise
- 600.000 Schwänzeltänze registriert → Code nicht geknackt
  - Beeinträchtigte Bienen tanzen weniger und unregelmäßiger

13

- Gifte
- Parasiten
- Schlafmangel (Tom Seeley)



# Sehverhalten

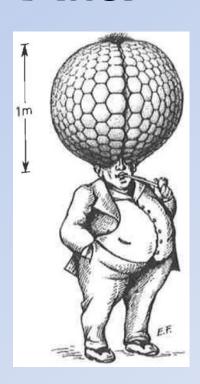
- Mensch sieht 3 Farben (blau, grün, rot)
- Biene ultaviolett, blau, grün
- Biene sieht Sonne grün (kein Rotsehen)
- Rot sehen sie wie schwarz
- Gelb von grün nicht unterscheidbar
- Wahrnehmung Polarisation des Lichtes
  - Ofenrohrexperiment Karl von Frisch
- Farbexperimente (unterschiedlicher Positionen, Duftstoffe entfernen)
- Bienen haben bessere spektrale Empfindlichkeit
  - Farbsehen benötigt unterschiedliche Brennweite
  - Blau Rezeptoren jünger als rot/grün (beim Menschen)
- Relativierung:
  - Helligkeit unterscheiden → Sehwinkel 5°
  - Farbunterscheidung → Sehwinkel 15°
    (2m Distanz, >50cm Höhe)



Quelle: apisticus.de






Quelle: bee-careful.com



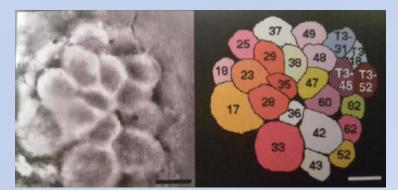


#### **Rundumblick mit 3500 Pixel**

- Gleiche Leistung wie Linsenauge Ø12m
- Facettenauge mit mittlerer Auflösung eines Linsenauges hat ca. Ø 1m (1Mio Einzelaugen pro Komplexauge)
- Vorteil: Flotte Verarbeitungsgeschwindigkeit
  - Viele Veränderungen auflösbar (beim Fliegen)
- Nachteil: grobe Rasterung
- Jedes Einzelauge hat 9 Farbrezeptoren
  - 3xultraviolett, 2xblau, 4xgrün
- 99% Lichtabsorption Rezeptoren filtern nur ihre benötigten Anteile








#### Räumliches Sehen

- Voraussetzung:
  - 2 Augen
  - Abstand zwischen den Augen
  - überlappendes Sehfeld
- Komplexaugen der Bienen
  - 1mm Abstand
  - Kleines überlappendes Sehfeld
  - Grobe Auflösung
- Vermutliche Nutzung
  - relative Größenabschätzung, Bewegungsparalaxe



- Nutzung
  - Orientierung in der Landschaft
  - Futtersuche
  - Aktivitäten im Stock



- Antenne durch 2 Gelenke sehr beweglich
  - Die meisten Riechrezeptoren an der Spitze
  - 60.000 Riechrezeptoren
  - Geruchsmolekül durch Porenplatte → mit Flüssigkeit gelöst und an Dendritenmembran gebunden → Signal für Nerv → Antennallobus (160 Kügelchen)
  - 160:1.000 Glomeruli (Kügelchen) → Duftkarten
  - "topochemischer Sinn" Karl von Frisch (räumlich)
  - Bienen können Verwandschaftsgrad riechen (Randolf Menzel)





# Geruchsempfinden der Extraklasse

- Versuch mit 48 unterschiedlichen Gerüchen
  - Belohnung nur bei einem speziellen Geruch
  - 100%ige Zuordnung
  - Bienen unterschieden Alkohole mit Unterschied eines Kohlenstoffatoms
  - Fettsäuren ungerne gelernt
- Neuronen aktivieren und deaktivieren Glomeruli → Verstärker
  - Bienen lernen besser zu unterscheiden
- Duftreize bis 6ms





# Geruchsempfinden nach Einsatz organischer Säuren

- Die ersten Beobachtungen zeigen Einschränkungen!
  - Deswegen kein Einsatz solcher Bienen bei wissenschaftlichen Experimenten
- Gründliche Untersuchungen hierzu fehlen noch

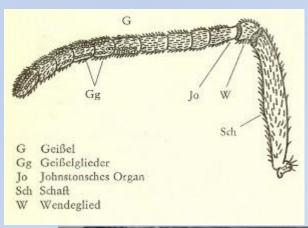


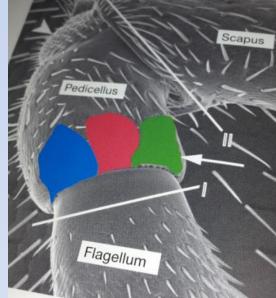
# Geschmacksempfinden

- Geschmacksrezeptoren nicht nur auf der Zunge
- Geschmacksrezeptoren an allen Härchen am Körper.
- 3 Geschmacksrezeptoren + 1 Tastrezeptor
  - Hohe und niedrige Salzkonzentrationsrezeptor
  - Zuckerrezeptor
- 1930 Hr. Kantner (Mitarbeiter von Frisch)
  - 1 Zuckermolekül pro 11 Wasser Fehlinterpretation
  - Kein definitiver Schwellwert bekannt (~0,1%)
- Bitterrezeptor scheint vorhanden aber noch nicht identifiziert
  - Bitteres wird ehr gemieden






# Gleichgewichtssinn


- Nackenhaare
  - Nach Entfernung, schlechte Orientierung, kein Fliegen



#### Antennen

- Geruchsempfänger
- Tastorgan
- Johnston'sche Organ im Kniegelenk der Antennen -Geschwindigkeitsempfinden
- Vibrationen der Antennen zur Kommunikation









### Hören Bienen?

- Karl von Frisch Telefonklingel
- Bedingte Hörbarkeit durch Tastrezeptor auf Härchen



#### Elektrostatische Felder

- Aufgeladene Styroporplatte als Reizsignal bewiesen Fähigkeit
- Schwänzeltanz zeigt charakteristische Muster elektrostatischer Felder
- Bienen verwenden Johnston'sches Organ zur Wahrnehmung elektrostatischer Felder
- Durch Bewegung der "Tänzerinnen" werden Antennen der Zuhörerinnen mitbewegt (Coulomb'sches Gesetz, statische Ladung)
- Diskussion der Wirkung von Starkstromleitungen bei Regen
- Bienen richten Waben in genau derselben Richtung zum Erdmagnetfeld aus, wie ursprünglicher Stock. (Rezeptoren hierfür sind noch nicht bekannt)





# Temperaturverhalten

- < 10°C
  - Probleme bei Nervreizübertragung
- Wintertraube 12°C
  - Aufwärmen alle 3 Tage
- Flugmuskulatur 37°C
- Erwachsene Biene hält bis ca. 49°C aus
  - Wärmebehandlung bei 44,5°C Lufttemperatur
  - Thematik Drohnenfertilität



# Hypertermie

- Bachelorarbeit, Julius-Maximilians-Universität, Würzburg, Arne Kablau, 9.9.2013
  - Drohnenfertilität
    - 41°C / 2 Std. Fertilität 73% (entspricht Vergleichsgruppe)
    - 42°C / 3 Std. Fertilität 0%, stichprobenartig
    - 43°C / 2 Std. Fertilität 0%
    - 45°C / 2 Std. Totale Brutausfall
  - Varroasterblichkeit
    - 41°C / 2 Std. (kein Brutausfall)
      - To Mortiliät: 4% Altmilben, 95% Jungmilben
      - T48 Mortilität: 5% Altmilben, 100% Jungmilben
    - 41°C / 3 Std.
      - TO Mortilität: 17% Altmilben, 88% Jungmilben
      - T48 Mortilität: 30% Altmilben, 100% Jungmilben
    - 42°C / 3 Std. (frisch verdeckelte Brut ist tot, trotz Luftbefeuchtung)
      - To Mortiliät: 85% Altmilben, 100% Jungmilben
      - T48 Mortilität: 100%



#### Bienenschlaf

- Schlafverhalten
  - Schlafende Bienen lassen Antennen hängen
    - Nur kurze Schläge mit den Flügeln, wie Augenbewegungen beim Mensch (Traum?)
  - Replay wahrscheinlich (Geruchstest)
  - Sammlerinnen halten Mittagsschlaf
  - Jungbienen schlafen öfter verteilt am Tag (und Nacht) → sinnvoll für Larvenfütterung



#### Lernverhalten

- Y-Kasten
  - Eingangsform oder Farbe wurde im Inneren wiedererkannt
- 2 unterschiedliche Reize
  - 2 verschiedene Farben
  - Im Norden andere Farbe als im Süden
  - Vormittags andere Farbe als nachmittags
  - Belohnung bei Geruch A und B aber beim Mixgeruch aus A und B nicht
- Bienen lernen Violett leichter als Blau oder Grün
- Bienen könnten Imker erkennen, bloß fehlen die Anreize ;-)
- Junge Bienen lernen bei Strafreizen weniger als Flugbienen
  - Sinnvoll bei Jungbienen am Flugbrett (Königinnen Pheromon?)
  - Sinnvoll bei Sammelbienen (zB Luzerne Kronblätter/Staubgefäße)





# Grenzen der Intelligenz

- Verkettung von Regeln verstehen Bienen nicht
  - Wenn ... dann



- Erster Erkundungsflug (7 Tage nach Schlupf)
  - Jungbiene fliegt 2-3m vom Stock weg, wendet 180°
  - Betrachtet ihren Stock (dauert ein paar Minuten)
  - Fliegt dann mit hoher Geschwindigkeit 50-300m bevor sie wieder zurück kommt
    - Sonnenstand, Beschaffenheit der Umgebung → Bildgedächtnis
    - Wegstrecke
- Flugstreckenangabe bei Trachtflug
  - Wenn Futterstelle h\u00f6her liegt, wird Wegstrecke kleiner angegeben
  - Wenn Futterstelle in einem Tunnel liegt, deutlich länger
  - Höherer Luftwiderstand größere Entfernung (Tiefflug)





# Flugbeobachtungen

- Versuch mit Zelten
  - 4 Zelte, wobei Futterstelle mittig zwischen Zelt 3 und 4
    - Futterstelle wurde nach Entfernung am alten Platz gesucht
  - Abstand zwischen den Zelten wurde verkleinert / vergrößert
    - Bienen suchten sowohl am alten Platz nach Metern wie auch nach dem relativen Platz mittig zwischen Zelt 3 und 4





# Flugbeobachtungen

- Aussetzen von Flugbienen
  - An einem bekannten Ort  $\rightarrow$  schnelle Rückkehr
  - An einem unbekannten Ort → keine Rückkehr oder verspätete Rückkehr, falls sie zufällig auf bekanntes Gebiet kam
  - Beweis Indiz für kognitive Karte im Bienenhirn

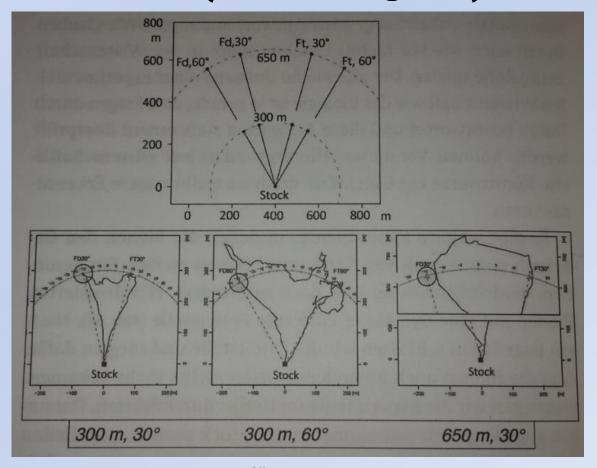


- 2 Versuchsgruppen werden auf Futterplatz trainiert
  - Erste Gruppe wird mit Narkosemittel 6 Stunden betäubt (innere Uhr bleibt stehen)
  - Zweite Gruppe wird nur in einem dunklen Behältnis verwahrt
  - Beide Gruppen werden an einer versetzten Stelle ausgesetzt
    - Erste Gruppe flog zuerst 90° in die falsche angenommene Richtung, korrigierten dann und flogen direkt zum Stock
    - Zweite Gruppe flog in die angenommene Richtung, merkte, dass der Stock nicht kam, korrigierte und flog direkt zum Stock



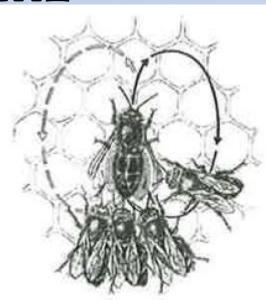


# ... alter Versuch von Karl von Frisch


- Bienen bekommen über Ofenrohr die Sonne zu sehen und tanzen auf der waagrechten Wabe völlig korrekt.
- In dem Augenblick, wo das Ofenrohr verschlossen wurde, tanzten die Bienen völlig durcheinander.
- Als Karl von Frisch die Waben senkrecht stellte, war der Tanz im Dunklen wieder völlig korrekt.
- → 2 Bezugsgrößen
  - Sonnenstand
  - Schwerkraft (Rezeptor noch nicht bewiesen)






# Flugbeobachtungen

Ein Herbstversuch (Trachtlosigkeit)



### Schwänzeltanz

- Richtungsangabe durch Schwänzeltanz
- Entfernung
  - Anzahl der Runden pro 15sek
  - Mehr Runden, Distanz kürzer
- Distanz bis ca. 80m → Rundtanz
  - Richtungsangabe weniger genau
- Bisher nur Hinweise, dass im Schwänzeltanz auch Bezug auf kognitive Karte genommen wird.
- Blütengeruch
- Dauer zeigt Rentabilität (Intensität spielt keine Rolle)





# Schwänzeltanz = Duftspur

- 1969: Bienen finden Futterstelle auf Grund des Geruchs
- Das stimmt bei eingelernten Orten für die eingelernten Bienen.
  - "Insider-Info"
- Bienen die den Platz noch nicht kannten, flogen gemäß Schwänzeltanz
  - Im Versuch wurde Nachläuferin versetzt, die dann gemäß Schwänzeltanzanordnung flog und nichts fand.

37





# Schwänzeltanz nur für **Futter?**

- Trachtquellen
- Pollen
- · Wasser, wenn es zu heiß wird
- Harz, an sich öffnenden Knospen
- Neuer Standort





# Schwänzeltanz um nicht hinzufliegen?

- Experiment der McMaster University in Kanada
  - An eingeflogener Futterstelle werden tote Bienen aufgelegt
  - Schwänzeltanz wird weniger ausgeprägt
  - − → Es fliegen weniger Bienen zur Futterstelle
  - Näheres ist unbekannt

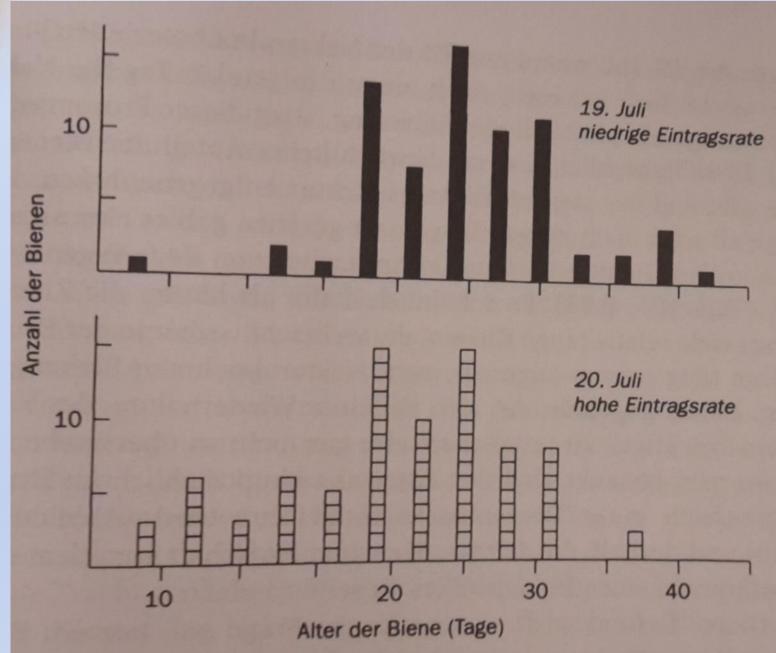




### "gelogener" Schwänzeltanz

- Futterquelle auf einem Boot (Princeton University)
- Bienen tanzten, aber weitere Bienen hatten kein Interesse
  - Grund: kognitive Karte?




## Nektareintrag

- Ø 25% Flugbienen, davon [Beispiel 60.000 -> 15.000]
  - 20% beschäftigungslos, davon [15.000 -> 3.000]
  - 10% Kundschafterinnen [3.000 -> 300]
- 95% der Flüge innerhalb 6km Radius (≅ 100km²)
  - Mehrheitlich innerhalb 1km
- Tanz nur wenn ergiebige Trachtquelle
  - Tanzboden 4-18cm hinter Flugöffnung
- Aktive Sammelbienen beachten keine Schwänzeltänze
- Inaktive Sammelbienen beobachten meist nur einen Schwänzeltanz
- Keine Abnahme -> Zittertanz (320Hz, 100ms)
- Leere Waben -> Steigerung des Sammeleifers
  - Geruch -> +30%

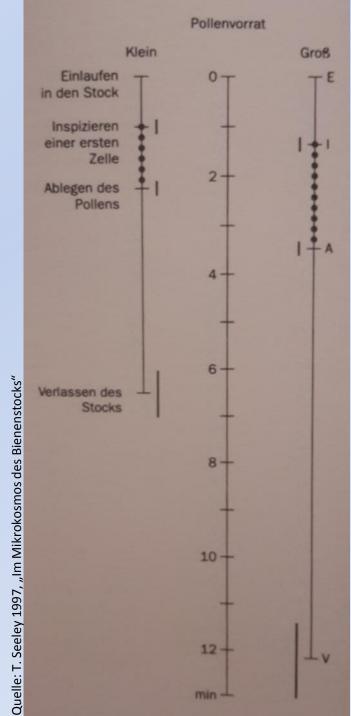




#### Anzahl der Bienen, die Nektar abnehmen






## Polleneintrag

- Kleine Pollenvorräte -> mehr Polleneintrag
  - Einzelbiene
    - Größere Mengen
    - Weniger Pausen (15min statt 30min)
    - Eintrag +43% -> schnellere Anpassung
  - Rekrutierung weiterer Sammelbienen
- Auslöser (nicht gesichert bekannt)
  - Kontakt zu Pollenflächen
  - Geruch
  - Kommunikationsimpuls?
    - Dr. Crailsheim (1991), 75% -> Larven, 25% -> Sammelbienen)



#### Seigerung des Polleneintrags durch

- Weniger Pausen
- Eintrag größerer Mengen pro Flug
- Zusätzlich Rekrutierung weiterer Sammelbienen







## Wassereintrag

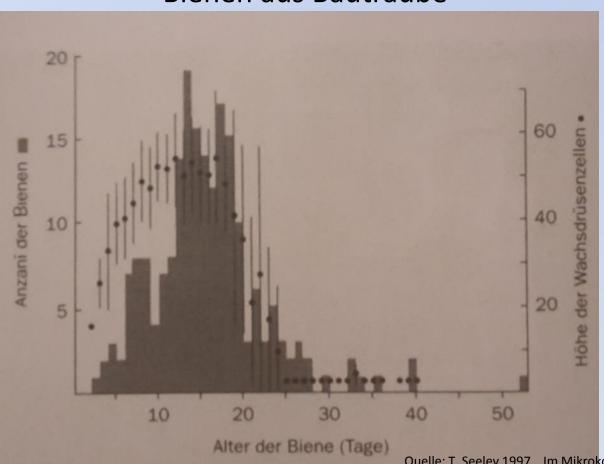
- Nur 1% der Bienen sammeln überhaupt Wasser
- Spezialisierung
- Ø 46 Wasserflüge pro Tag und Biene
- Verm. Erstaktivierung durch hohen Zuckergehalt in der Honigblase
- Weitere Aktivierung über Schwänzeltanz und Abnahmerate

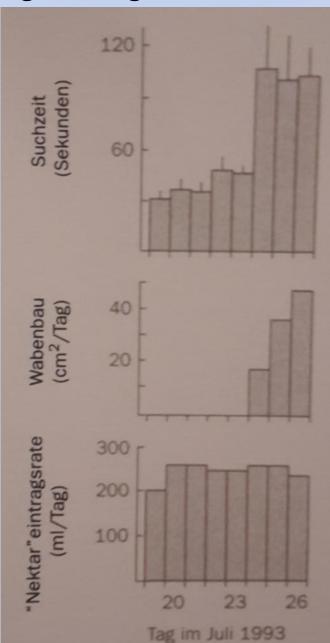




### Baubienen

- Mehrheitlich 10-20 Tage alt
  - Max. Drüsengröße mit 18 Tagen
- Wabenbau wenn 60-80% der Zellen gefüllt sind und guter Trachteintrag


48

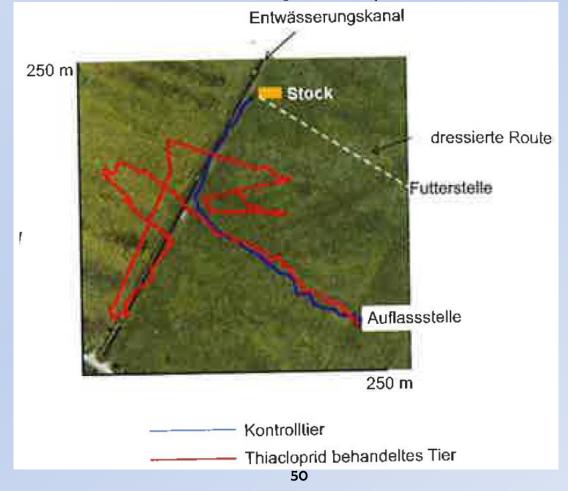

- Ausnahmen:
  - Herbst -> Verhonigung der Brutzellen
  - Schwarmtrieb

8.11.2017

### Regulierung durch Suchzeit

#### Bienen aus Bautraube






Quelle: T. Seeley 1997, "Im Mikrokosmos des Bienenstocks"



## Flugbeobachtungen

Wirkung von Thiacloprid (Neonicotinoid)





## Auswirkung von Neonicotinoiden

- Starke Erregung Überreaktion der Neuronen
- Blockade
- Natriumionen strömt in unbewältigbarer Menge in Neuron und verdrängen Kaliumione → Signal-/Informationsweiterleitung unterbunden (-60mV) → die Biene stirbt
- In geringen Dosen
  - Sonnenkompass, Entfernungseinschätzung funktioniert
  - Zugriff auf kognitive Karte funktioniert nicht
  - Eine laufende Einnahme von geringen Mengen (Thiacloprid)
    - immer höhere Dosis Zucker für Sammelaktivität
    - Einstellung der Tanzaktivitäten





## Auswirkung von Neonicotinoiden

LD50: 15.000 Nanogramm pro Tier (Thiacloprid)

- Studienergebnis bei chronischer Dosis:
  - 64 Nanogramm: massive Schädigung der Gedächtnisbildung und des Gedächtnisabrufs
  - 170 Nanogramm: Einstellung des Schwänzeltanzes
    - Tatsächliche Aufnahme nur 2 Nanogramm pro Flug
    - ~90% des eingebrachten Nektars wird im Stock "abgeladen"



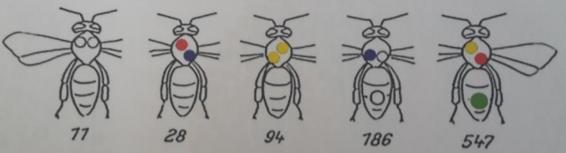


### ... die Zahl 4

- Bienen können sich bis zu 4 verschiedene Zeiten und Orte merken
- ... und sie kommt stets ca. 5min zu früh

## "Erster"




### Schwarm

- Randolf Menzel behauptet, dass Altkönigin bis zur Befruchtung der Jungkönigin im Stock bleibt und erst dann schwärmt.
- Schwarm ist konsensorientiert
  - Stoppsignal
  - Kontrolle wie das Werben ankommt
  - Wenn Entschluss gefallen (100%), kriechen erfahrene
    Bienen in die Schwarmtraube
    - Vibrieren der Flügel (piepen)
    - 35°C
    - 1-2% der Bienen kennen neuen Standort
    - "Streaker" geben die Richtung an (Tom Seeley)



## ... wer selbst experimentieren möchte





**FAbb. 1-1a** Mit Karl von Frischs Methode kann man bis zu 599 Bienen unterscheiden. Wird auch der Hinterleib der Bienen mit fünf Farben markiert, lassen sich an die 2000 Bienen individuell kennzeichnen.<sup>3</sup>





- Die Intelligenz der Bienen
  - Randolf Menzek, Matthias Eckoldt, 2016
- Phänomen Honigbiene
  - Jürgen Tautz, 2012
- Im Mikrokosmos des Bienenstocks
  - Thomas D. Seeley, 1997 (engl. Ausgabe 1995)
- Abbildungen sind aus dem Buch "Die Intelligenz der Bienen", sofern nicht anders beschriftet
- Bachelorarbeit, Julius-Maximilians-Universität, Würzburg, Arne Kablau, 9.9.2013



## Die Biene in der Forschung

Imkerverein Floridsdorf