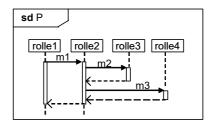
Sequenzdiagramm

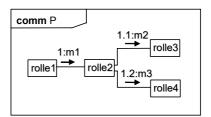
Inhalt

9.1	Exkurs Interaktionsdiagramme				
9.2	Übersicht Sequenzdiagramm7				
9.3	.3 Digrammrahmen				
9.4	Leben	slinie	10		
	9.4.1	Ereignisspezifikation	11		
	9.4.2	Reihenfolge	12		
	9.4.3	Ausführungsspezifikation	13		
	9.4.4	Aktives Objekt	14		
9.5	Nachri	cht	15		
	9.5.1	Spezielle Nachrichtenarten	16		
	9.5.2	Beispiel	17		
	9.5.3	Zeiteinschränkungen	18		
	9.5.4	Beispiel	19		
9.6	Zustandsinvariante		20		
9.7	Kombi	nierte Fragmente	21		
	9.7.1	Notation	22		
		Operatorarten			
	9.7.3	Verzweigungen und Schleifen: alt-Operator			
	9.7.4	Verzweigungen und Schleifen: loop-Operator			
	9.7.5	Verzweigungen und Schleifen: opt- und break-Operator			
	9.7.6	Parallelität und Ordnung: seq-Operator / strict-Operator	27		
	9.7.7	Parallelität und Ordnung: par-Operator	28		
	9.7.8	Parallelität und Ordnung: critical-Operator	29		
	9.7.9	Filterungen und Zusicherungen: ignore-Operator / consider-Operator	30		
		Filterungen und Zusicherungen: assert-Operator / neg-Operator			
9.8		arisierung			
	9.8.1	Interaktionsreferenz	32		

9-1

```
9.8.2Fortsetzungsmarke-349.8.3Verknüpfungspunkt-359.9Exkurs: Sequenzdiagramm vs. Aktivitätsdiagramm-37
```


 $^{@}$ Prof. Dr. Wolfgang Klas, Prof. Dr. Dimitris Karagiannis, SS 2017 - Modellierung 9 Sequenzdiagramm

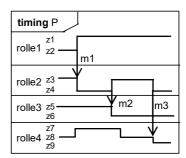

9.1 Exkurs Interaktionsdiagramme

- ☐ 4 Arten von Interaktionsdiagrammen
 - o Für einfache Interaktionen semantisch äquivalent
 - o Betonung unterschiedlicher Aspekte
- □ Sequenzdiagramm zeigt den zeitlichen und logischen Nachrichtenfluss
 - o Reihenfolge von Nachrichten grafisch ersichtlich
 - o Zeit ist eigene Dimension

☐ Kommunikationsdiagramm ist »strukturell« orientiert

- Zeigt die Beziehungen zwischen Interaktionspartnern – Kontextaspekt
- o Reihenfolge von Nachrichten nur über Dezimalklassifikation ausgedrückt
- Zeit ist keine eigene Dimension

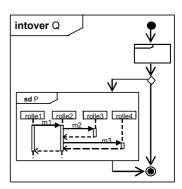
© Prof. Dr. Wolfgang Klas, Prof. Dr. Dimitris Karagiannis, SS 2017 - Modellierung


9-3

Exkurs Interaktionsdiagramme

□ Zeitdiagramm

zeigt Zustandsänderungender Interaktionspartner aufgrund von Zeitereignissen


- o Vertikale Dimension repräsentiert Interaktionspartner und ihre möglichen Zustände
- o Horizontale Dimension repräsentiert die Zeitachse

□ Interaktionsübersichtsdiagramm

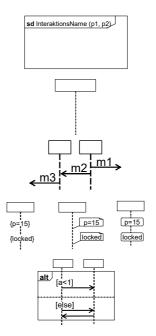
zeigt das Zusammenspiel von verschiedenen Interaktionen

 Visualisiert in welcher Reihenfolgeund unter welchen Bedingungen Interaktionsabläufe stattfinden

Exkurs Interaktionsdiagramme

- ☐ Zeigen wie Nachrichten zwischen verschiedenen Interaktionspartnern in einem bestimmten Kontext ausgetauscht werden
- □ Einsatzbereiche
 - o Modellierung der Interaktionen eines Systems mit seiner Umwelt (Systemgrenzen festlegen, System als Black-Box)
 - o Modellierung der Realisierung eines Anwendungsfalls
 - o Modellierung des Zusammenspiels der internen Struktur einer Klasse, Komponente oder Kollaboration
 - o Modellierung der Spezifikation von Schnittstellen zwischen Systemteilen (Zusammenspiel angebotene/benutzte Schnittstelle)
 - o Modellierung der Operationen einer Klasse

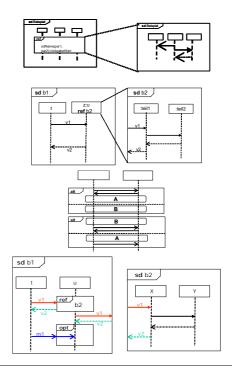
9-5


Exkurs Interaktionsdiagramme: Typ- vs. Instanzebene

- □ Modellierung des Nachrichtenaustauschs zwischen Rollen und damit prinzipiell auf Rollenebene
 - o Kontext der Interaktion durch strukturierte Classifier festgelegt = Kontext-Classifier
 - o Deren Rollen stellen die Interaktionspartner dar
 - o Tatsächliche Interaktion findet selbstverständlich auf Instanzebene zwischen **Objekten** statt
- □ Modellierung auf Instanzebene möglich, um eine Abfolge von Nachrichten zwischen konkreten Objekten darzustellen = Trace

[©] Prof. Dr. Wolfgang Klas, Prof. Dr. Dimitris Karagiannis, SS 2017 - Modellierung

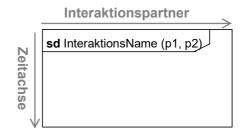
9.2 Übersicht Sequenzdiagramm


- □ Diagrammrahmen
- □ Lebenslinie
- Nachricht
- Zustandsinvariante
- □ Kombiniertes Fragment

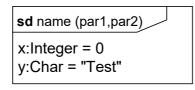
9-7

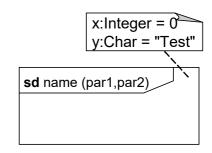
Darstellung von Sequenzdiagrammen

- □ Interaktionsreferenz
- □ Zerlegung einer Lebenslinie
- □ Fortsetzungsmarke
- □ Verknüpfungspunkt



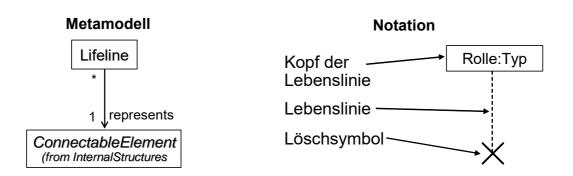
 $^{{\}mathbb C}$ Prof. Dr. Wolfgang Klas, Prof. Dr. Dimitris Karagiannis, SS 2017 - Modellierung 9 Sequenzdiagramm


[©] Prof. Dr. Wolfgang Klas, Prof. Dr. Dimitris Karagiannis, SS 2017 - Modellierung 9 Sequenzdiagramm


9.3 Digrammrahmen

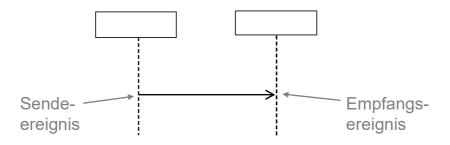
- Rahmennotation
 - o Für alle UML2 Diagrammarten möglich
 - o Pentagon
 - Diagrammtypsd für Sequenzdiagramm
 - Interaktionsname
 - Optionale Parameter

- □ Zwei Darstellungsdimensionen
 - Vertikale Dimension repräsentiert Zeitachse
 - o Horizontale Dimension repräsentiert Interaktionspartner in Form von Rollen
- □ Lokale Attribute
 - o zwei Varianten:


© Prof. Dr. Wolfgang Klas, Prof. Dr. Dimitris Karagiannis, SS 2017 - Modellierung

9 Sequenzdiagramm

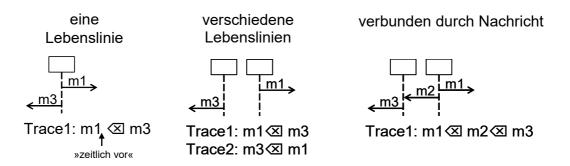
9-9


9.4 Lebenslinie

- ☐ Eine Lebenslinie beschreibt genau einen Interaktionspartner
- ☐ Als Interaktionspartner können alle Rollen des Kontext-Classifiers auftreten
- ☐ Rollen sind vom Typ **ConnectableElement** (z.B. Klassen, Attribute oder Ports)

9.4.1 Ereignisspezifikation

- ☐ Interaktionen werden als Folge von Ereignisspezifikationen auf Lebenslinien betrachtet
- ☐ Beispiel für Ereignisspezifikationen
 - Senden und Empfangen von Nachrichten auf verschiedenen Lebenslinien oder der gleichen Lebenslinie



9 Sequenzdiagramm

9-11

9.4.2 Reihenfolge

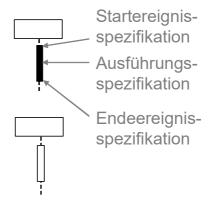
- ☐ Reihenfolge von Ereignisspezifikationen
 - Vertikale Zeitachse bestimmt nur die Ordnung von Ereigniseintritten pro Lebenslinie
 - Jedoch **nicht** die Reihenfolge von Ereigniseintritten **auf verschiedenen Lebenslinien**
 - Erst durch Nachrichten zwischen Lebenslinien wird eine Ordnung über Lebenslinien hinweg erzwungen

 $^{\ \, \}mathbb{C}$ Prof. Dr. Wolfgang Klas, Prof. Dr. Dimitris Karagiannis, SS 2017 - Modellierung 9 Sequenzdiagramm

[©] Prof. Dr. Wolfgang Klas, Prof. Dr. Dimitris Karagiannis, SS 2017 - Modellierung

⁹⁻¹²

9.4.3 Ausführungsspezifikation

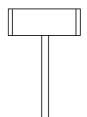

- ☐ Die **Ausführung** einer Aktivität/Operation wird durch zwei Ereignisspezifikationen (Start und Ende) auf der gleichen Lebenslinie definiert
- □ Diese sogenannte **Ausführungsspezifikation** kann durch einen Balken dargestellt werden
- Ausführungsarten

o Direkt

 Interaktionspartner führt Verhalten selbst aus

o Indirekt

 Ausführung wird an andere Interaktionspartner delegiert



9 Sequenzdiagramm

9-13

9.4.4 Aktives Objekt

- ☐ Aktive Objekte verfügen über eigenen Kontrollfluss (Prozess oder Thread)
- ☐ Können **unabhängig** von anderen Objekten operieren
- □ Notation
 - Kopf der Lebenslinie wird links und rechts mit doppeltem Rand versehen
 - o durchgehender Balken über gesamte Lebenslinie

[©] Prof. Dr. Wolfgang Klas, Prof. Dr. Dimitris Karagiannis, SS 2017 - Modellierung

9.5 Nachricht

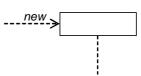
□ Arten der Nachrichtenübermittlung

□ Synchroner Kontrollfluss

o Der Sender wartet bis zur Beendigung der Interaktion, die durch die Nachricht ausgelöst wurde

□ Asynchroner Kontrollfluss

- Die Nachricht wird als Signal betrachtet
- o Der Sender wartet nicht auf das Ende der Interaktion


☐ Antwortnachricht (optional)


9.5.1 **Spezielle Nachrichtenarten**

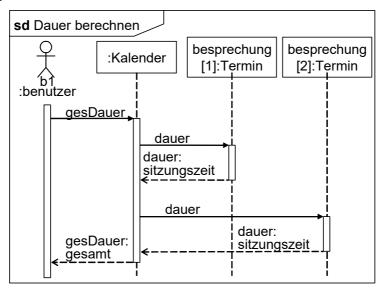
□ Objekterzeugung

o Ermöglicht, einen Interaktions-partner erst im Laufe der Interaktion zu erzeugen

- □ Verlorene Nachricht
 - Senden einer Nachricht an unbekannten oder nichtrelevanten Interaktionspartner

- □ **Gefundene** Nachricht
 - o Empfang einer Nachricht von einem unbekannten oder nicht relevantenInteraktionspartner

□ Zeitkonsumierende Übertragung

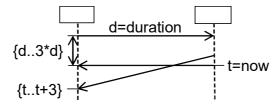


[©] Prof. Dr. Wolfgang Klas, Prof. Dr. Dimitris Karagiannis, SS 2017 - Modellierung 9 Sequenzdiagramm

⁹⁻¹⁵

9.5.2 Beispiel

□ Berechnung der Dauer eines Termins

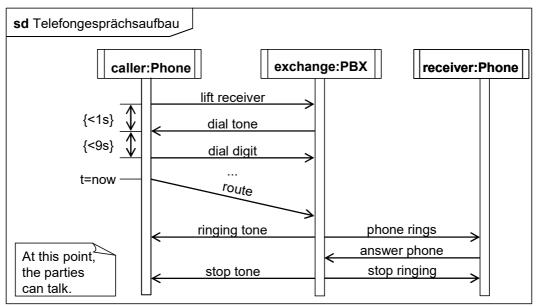

© Prof. Dr. Wolfgang Klas, Prof. Dr. Dimitris Karagiannis, SS 2017 - Modellierung

9 Sequenzdiagramm

9-17

9.5.3 Zeiteinschränkungen

- □ Arten
 - Zeitpunkt (time constraint)
 - Bezieht sich auf einzelne Ereignisspezifikation
 - Zeitdauer (duration constraint)
 - Bezieht sich auf Zeitintervall zwischen zwei Ereignisauftritten
- □ Vordefinierte Aktionen zur Zeitberechnung
 - o now: Berechnung der aktuellen Zeit
 - o duration: Berechnung einer Zeitdauer
 - o Erhaltene Werte können Variablen zugewiesen werden
 - o Variablen können in Zeitausdrücken verwendet werden



[©] Prof. Dr. Wolfgang Klas, Prof. Dr. Dimitris Karagiannis, SS 2017 - Modellierung

⁹ Sequenzdiagramm

9.5.4 **Beispiel**

□ Aufbau eines Telefongesprächs

(basierend auf [Rumb05])

9-19

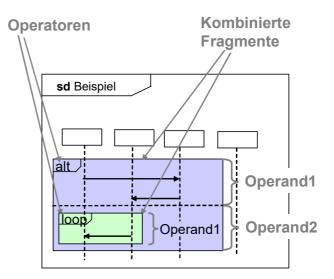
9.6 Zustandsinvariante

- ☐ Zusicherung, dass eine bestimmte Bedingung zu einem bestimmten Zeitpunkt erfüllt ist
- ☐ Bezieht sich immer auf eine **bestimmte Lebenslinie**
- ☐ Wird vor Eintritt des darauf folgenden Ereignisses ausgewertet
- ☐ Falls Zustandsinvariante nicht erfüllt ist Fehler
- Notationsvarianten

[©] Prof. Dr. Wolfgang Klas, Prof. Dr. Dimitris Karagiannis, SS 2017 - Modellierung

 $[\]ensuremath{\mathbb{C}}$ Prof. Dr. Wolfgang Klas, Prof. Dr. Dimitris Karagiannis, SS 2017 - Modellierung

⁹ Sequenzdiagramm


9.7 Kombinierte Fragmente

- ☐ Modellierung von Kontrollstrukturen
- ☐ Bestandteile: **Operator** und **Operanden**
- □ Operator
 - Definiert Art des kombinierten Fragments
 - o 12 vordefinierte Operatoren
- Operand
 - o Ein Operator enthält 1 oder mehrere Operanden, je nach Operatorart
 - o Kann Interaktionen, kombinierte Fragmente (Schachtelung!) und Referenzen auf Sequenzdiagramme umfassen

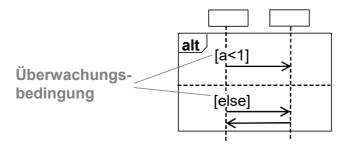
9-21

9.7.1 **Notation**

- ☐ Kombiniertes Fragment wird wie Sequenzdiagramm mit Rahmen dargestellt
- □ Art des Fragments wird durch Operator im Pentagon festgelegt (default: seq)
- □ Operanden werden durch gestrichelte Linien voneinander getrennt

[©] Prof. Dr. Wolfgang Klas, Prof. Dr. Dimitris Karagiannis, SS 2017 - Modellierung 9 Sequenzdiagramm

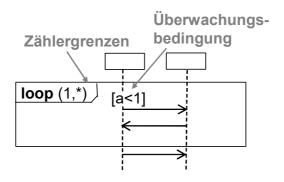
9.7.2 Operatorarten


	Operator	Zweck
gen	alt	Alternative Interaktionen
gung hleif	opt	Optionale Interaktionen
Verzweigungen und Schleifen	break	Ausnahme Interaktionen
Ver	loop	Iterative Interaktionen
ät ng	seq	Sequentielle Interaktionen mit schwacher Ordnung (Default-Operator)
allelität Ordnung	strict	Sequentielle Interaktionen mit strenger Ordnung
Parallelität und Ordnun	par	Parallele Interaktionen
_ = =	critical	Atomare Interaktionen
nnd	ignore	Irrelevante Interaktionen
	consider	Relevante Interaktionen
Filterungen Zusicherun	assert	Zugesicherte Interaktionen
Filte Zus	neg	Ungültige Interaktionen

[©] Prof. Dr. Wolfgang Klas, Prof. Dr. Dimitris Karagiannis, SS 2017 - Modellierung

9-23

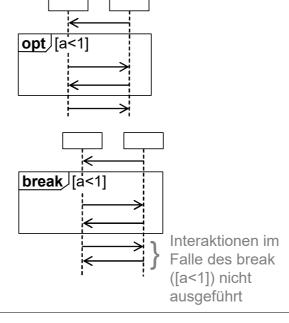
9.7.3 Verzweigungen und Schleifen: alt-Operator


- ☐ Darstellung von zwei oder mehreren alternativen Interaktionsabläufen
- ☐ Zur Laufzeit wird maximal ein Operand ausgeführt
- ☐ Auswahl eines Operanden anhand von Überwachungsbedingungen
 - o Boolscher Ausdruck in eckigen Klammern
 - o Vordefinierte **else-Bedingung**: Operand wird ausgeführt, falls die Bedingungen aller anderen Operanden nicht erfüllt sind

⁹ Sequenzdiagramm

9.7.4 Verzweigungen und Schleifen: loop-Operator

- □ Darstellung einer **Schleife** über einen bestimmten Interaktionsablauf
- ☐ Fragment enthält nur einen Operanden
- □ Ausführungshäufigkeit wird durch Zähler mit Unter- und Obergrenze dargestellt
- □ Optional: Überwachungsbedingung, wird bei jedem Durchlauf überprüft



[©] Prof. Dr. Wolfgang Klas, Prof. Dr. Dimitris Karagiannis, SS 2017 - Modellierung

9-25

9.7.5 Verzweigungen und Schleifen: opt- und break-Operator

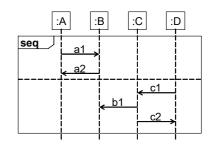
- □ Überwachungsbedingung steuert Durchlauf der Interaktionen
- Optionale Interaktionen
- □ Ausnahme-Interaktionen

[©] Prof. Dr. Wolfgang Klas, Prof. Dr. Dimitris Karagiannis, SS 2017 - Modellierung

⁹ Sequenzdiagramm

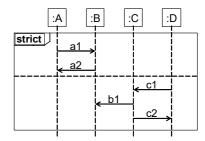
⁹ Sequenzdiagramm

9.7.6 Parallelität und Ordnung: seq-Operator / strict-Operator


□ Sequentielle Interaktion mit schwacher Ordnung

Beispiele für mögliche Abfolgen:

Trace1: a1 a2 c1 b1 c2


Trace2: a1 c1 a2 b1 c2

Trace3: c1 a1 a2 b1 a2 b1 a2

☐ Sequentielle Interaktion mit strenger Ordnung mögliche Abfolge:

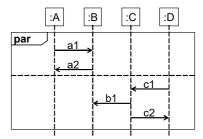
Trace1: a1 図 a2 図 c1 図 b1 図 c2

9-27

9.7.7 Parallelität und Ordnung: par-Operator

- □ Nebenläufige Interaktionen
 - Lokale Reihenfolge pro Operand muss erhalten bleiben - z.B. a1 vor b1

Trace1: a1 ☒ a2 ☒ c1 ☒ b1 ☒ c2

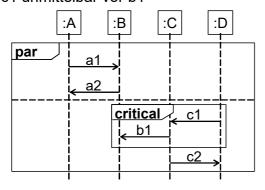

Trace2: a1 ≤ c1 ≤ a2 ≤ b1 ≤ c2

Trace3: a1 ≤ c1 ≤ b1 ≤ a2 ≤ c2

Trace4: a1 ⊠ c1 ⊠ b1 ⊠ c2 ⊠ a2

Trace7: c1 ≤ a1 ≤ b1 ≤ c2 ≤ a2

Trace10: c1 ≤ b1 ≤ c2 ≤ a1 ≤ a2

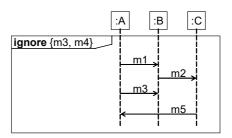


[©] Prof. Dr. Wolfgang Klas, Prof. Dr. Dimitris Karagiannis, SS 2017 - Modellierung

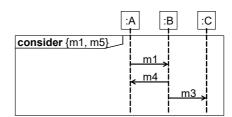
⁹ Sequenzdiagramm

9.7.8 Parallelität und Ordnung: critical-Operator

□ Kritischer Bereich c1 unmittelbar vor b1



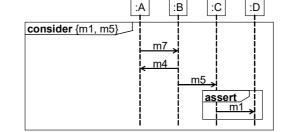
Trace1: a1 ⊗ a2 ⊗ c1 ⊗ b1 ⊗ c2 Trace2: a1 ⊗ c1 ⊗ b1 ⊗ a2 ⊗ c2 Trace3: a1 ⊠ c1 ⊠ b1 ⊠ c2 ⊠ a2 Trace4: c1 ⊠ b1 ⊠ a1 ⊠ a2 ⊠ c2 Trace5: c1 ⊗ b1 ⊗ a1 ⊗ c2 ⊗ a2 Trace6: c1 ⊗ b1 ⊗ c2 ⊗ a1 ⊗ a2


9-29

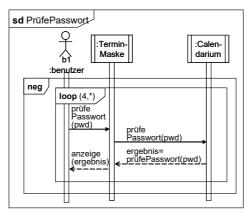
9.7.9 Filterungen und Zusicherungen: ignore-Operator / consider-Operator

□ Irrelevante Interaktionen

□ Relevante Interaktionen


□ Diese Operatoren werden meist in Kombination mit Operator assert verwendet.

[©] Prof. Dr. Wolfgang Klas, Prof. Dr. Dimitris Karagiannis, SS 2017 - Modellierung


⁹ Sequenzdiagramm

9.7.10 Filterungen und Zusicherungen: assert-Operator / neg-Operator

□ Zugesicherte Interaktionen

□ Ungültige Interaktionen

[©] Prof. Dr. Wolfgang Klas, Prof. Dr. Dimitris Karagiannis, SS 2017 - Modellierung

9 Sequenzdiagramm

9-31

9.8 Modularisierung

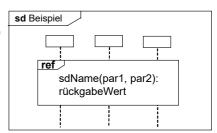
□ Zweck: Wiederverwendung und Reduktion der Komplexität

□ Interaktionsreferenz

- o Zur Referenzierung anderer Sequenzdiagramme
- o Dadurch können Interaktionsabläufe und Lebenslinien zerlegt werden

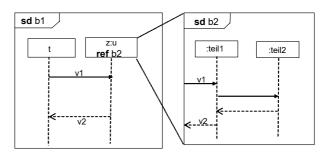
□ Fortsetzungsmarke

o Zur Zerlegung der Operanden eines alt-Operators


□ Verknüpfungspunkt

 Zur Verbindung von Nachrichten zwischen Sequenzdiagrammen, Interaktionsreferenzen oder kombinierten Fragmenten

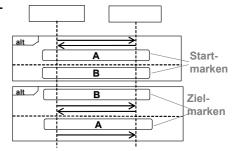
9.8.1 Interaktionsreferenz


□ Interaktionen des referenzierten Sequenzdiagramms werden ausgeführt, so als wären sie direkt in das referenzierende Diagramm eingebettet

- ☐ Eventuell vorhandene **Parameter** werden gebunden
- □ Nach Ausführung der referenzierten Interaktionen wird unterhalb der Interaktionsreferenz fortgesetzt
- ☐ Zerlegung von Interaktionsabläufen
 - o Rahmen mit Pentagon in der linken oberen Ecke
 - o Pentagon enthält Schlüsselwort ref
 - o Rahmen enthält Namen der referenzierten Interaktion, optional Parameter und Rückgabewerte

□ Zerlegung von Lebenslinien

- o Lebenslinien können interne Strukturen aufweisen, für die eigene Sequenzdiagramme spezifiziert werden können
- Schlüsselwort ref im Kopf der Lebenslinie


© Prof. Dr. Wolfgang Klas, Prof. Dr. Dimitris Karagiannis, SS 2017 - Modellierung

9 Sequenzdiagramm

9-33

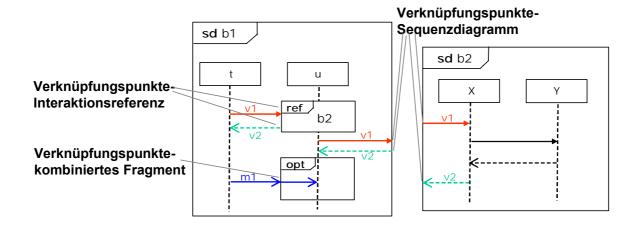
9.8.2 **Fortsetzungsmarke**

- □ Zweck: Zerlegung der Operanden eines alt-Fragments
- ☐ Startmarke am Ende eines Interaktionsteils verweist auf Zielmarke am Beginn eines anderen Interaktionsteils
 - Gleiche Markennamen
 - o Überdeckung gleicher Menge an Lebenslinien
 - o Rechtecke mitabgerundeten Ecken

- ☐ Erreicht die Ausführung die Startmarke, wird mit den Interaktionen unterhalb der Zielmarke fortgefahren
 - Achtung: kein Rücksprung zur Startmarke möglich!

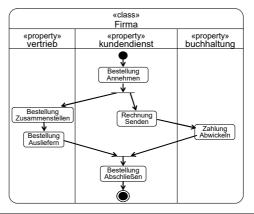
9.8.3 Verknüpfungspunkt

- ☐ Zweck: ermöglicht den Nachrichtenfluss zwischen
 - o Sequenzdiagrammen und/oder
 - o kombinierten Fragmenten und/oder
 - Interaktionsreferenzen
- □ Dadurch können hereinkommende oder hinausgehende Nachrichten modelliert werden
- □ Verknüpfungspunkte zwischen Sequenzdiagrammen können
 - o entweder implizit über Namensgleichheit
 - o oder explizit über eine Interaktionsreferenz modelliert werden


© Prof. Dr. Wolfgang Klas, Prof. Dr. Dimitris Karagiannis, SS 2017 - Modellierung

9 Sequenzdiagramm

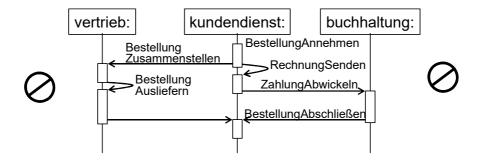
9-35


Verknüpfungspunkt

- □ Spitze oder Ende eines Nachrichtenpfeils berührt Rand des Rahmes
- ☐ Optional: Name für Verknüpfungspunkt wird neben Schnittpunkt von Nachrichtenpfeil und Rahmen angegeben

9.9 Exkurs: Sequenzdiagramm vs. Aktivitätsdiagramm

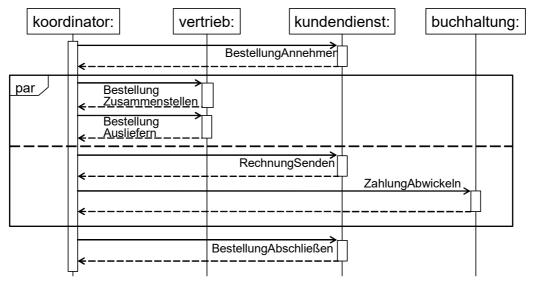
- □ Pfeil im Aktivitätsdiagramm
 - Zeigt Abhängigkeiten zwischen Aktionen
 - o Zeigt NICHT: Nachrichten zwischen Objekten
 - o Entspricht einer, mehreren oder keiner Nachricht
- □ Pfeil im Sequenzdiagramm
 - o Zeigt Nachrichten zwischen Objekten
 - o Entspricht Operation einer Klasse
- □ Beispiel: Akitivitätsdiagramm


© Prof. Dr. Wolfgang Klas, Prof. Dr. Dimitris Karagiannis, SS 2017 - Modellierung

9 Sequenzdiagramm

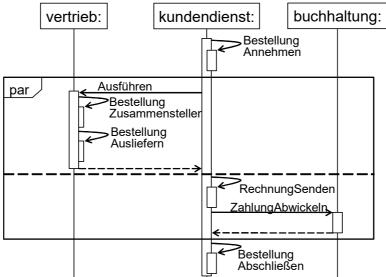
9-37

Exkurs: Sequenzdiagramm vs. Aktivitätsdiagramm


- ☐ Beispiel: Sequenzdiagramm falsche Transformation
 - o Pfeile können nicht zu Nachrichten transformiert werden
 - Beispielsweise kann RechnungSenden nicht das Abschicken der Nachricht ZahlungAbwickeln beinhalten
 - o RechnungSenden ist zu Ende, bevor ZahlungAbwickeln gestartet wird
 - Damit wird sichergestellt, dass RechnungSenden wiederverwendbar ist, ohne festzulegen, was vorher und nachher passieren muss

[©] Prof. Dr. Wolfgang Klas, Prof. Dr. Dimitris Karagiannis, SS 2017 - Modellierung 9 Sequenzdiagramm

Exkurs: Sequenzdiagramm vs. Aktivitätsdiagramm


☐ Beispiel: Sequenzdiagramm – Alternative 1

9-39

Exkurs: Sequenzdiagramm vs. Aktivitätsdiagramm

☐ Beispiel: Sequenzdiagramm – Alternative 2

[©] Prof. Dr. Wolfgang Klas, Prof. Dr. Dimitris Karagiannis, SS 2017 - Modellierung

⁹ Sequenzdiagramm

 $^{{\}mathbb C}$ Prof. Dr. Wolfgang Klas, Prof. Dr. Dimitris Karagiannis, SS 2017 - Modellierung 9 Sequenzdiagramm

- □ [OMG 2015] OMG Unified Modeling Language[™] (OMG UML), Version 2.5 Normative Reference: http://www.omg.org/spec/UML/2.5 OMG Document Number formal/2015-03-01
- ☐ Kapitel 4.4 in:

Martin Hitz, Gerti Kappel, Elisabeth Kapsammer, Werner Retschitzegger: UML @ Work - Objektorientierte Modellierung mit UML2. dpunkt Verlag 2005 / 3. aktualis. u. überarb. Aufl. 2005. ISBN-13: 9783898642613 ISBN-10: 3898642615

9-41

□ Tool zur Vertiefung: BEE-UP Modelling Tool: http://austria.omilab.org/psm/content/bee-up/info http://www.omilab.org/web/guest/omilab-in-education/cmmc

© Prof. Dr. Wolfgang Klas, Prof. Dr. Dimitris Karagiannis, SS 2017 - Modellierung