VO 050041:

Technische Grundlagen der Informatik

Begleitende Folien zur Vorlesung
Wintersemester 2016/17

Vortragende: Peter Reichl, Andreas Janecek

Zuletzt aktualisiert: 4. November 2016

Teil 3:

Grundlagen der Aussagenlogik

Überblick

- 1 Aussagenlogik, Axiome und Gesetze
- 2 Normalformen
- 3 KV-Diagramme
- 4 Fuzzy-Logik

Literatur

• Informatik (Blieberger, Springer-Verlag): Kapitel 11

Überblick

- Aussagenlogik, Axiome und Gesetze Aussagenlogik Axiome und Gesetze Tautologie, Antilogie (Kontradiktion)
- 2 Normalformen
- 3 KV-Diagramme
- 4 Fuzzy-Logik

Boole'sche Algebra

Boole'sche Algebra

- Grundlage f
 ür digitale Schaltungen
- Kennt nur zwei Werte:
 - 1 Wahre Aussage
 - 2 Falsche Aussage
- George Boole, 1847 (!)

L-Aussagenlogik

Aussagenlogik

Wahrheitswerte						
Wahr	Falsch					
W (wahr)	F (falsch)					
T (true)	F (false)					
H (high)	L (low)					
1 (Bit gesetzt)	0 (Bit nicht gesetzt)					

L Aussagenlogik

Operatoren

Unäre Operationen

Negation ("nicht", "NOT"): ¬

Binäre Operationen

- Konjunktion ("und", "AND"): ∧
- Disjunktion ("inklusives oder", "OR"): ∨
- Implikation^a: ⇒
- Äquivalenz: ⇔

^aVORSICHT: die Implikation (auch materiale Implikation, Subjunktion, Konditional genannt) drückt eine hinreichende Bedingung aus, aber keine Kausalität!

L-Aussagenlogik

Wahrheitswerte

Wahrheitswerte

а	b	¬а	a∨b	a∧b	$a\Rightarrowb$	$\mathbf{a} \Leftrightarrow \mathbf{b}$
0	0	1	0	0	1	1
0	1	1	1	0	1	0
1	0	0	1	0	0	0
1	1	0	1	1	1	1

Ordnungsrelation (Operatorrangfolge)

- 0 -
- 2 ^
- **3** V

Axiome und Gesetze

Axiome und Gesetze

Kommutativität

- $a \wedge b = b \wedge a$
- $a \lor b = b \lor a$

Distributivität

- $a \wedge (b \vee c) = (a \wedge b) \vee (a \wedge c)$
- $a \lor (b \land c) = (a \lor b) \land (a \lor c)$

Axiome und Gesetze

Axiome und Gesetze

Verknüpfung mit 1 bzw. 0

- $a \wedge 1 = a$
- $a \lor 0 = a$

Komplementäres Element

- $a \wedge \neg a = 0$
- $a \lor \neg a = 1$

Axiome und Gesetze

Axiome und Gesetze

Assoziativität

- $(a \wedge b) \wedge c = a \wedge (b \wedge c)$
- $(a \lor b) \lor c = a \lor (b \lor c)$

Absorption

- $(a \wedge b) \vee a = a$
- $(a \lor b) \land a = a$

Auslöschung

- $a \wedge (b \vee \neg b) = a$
- $a \lor (b \land \neg b) = a$

L Axiome und Gesetze

Axiome und Gesetze

Idempotenz

- $a \wedge a = a$
- $a \lor a = a$

Involutivität

• $\neg(\neg a) = a$

De Morgansche Regel

- $\neg(a \land b) = \neg a \lor \neg b$
- $\neg(a \lor b) = \neg a \land \neg b$

VO 050041: Technische Grundlagen der Informatik

- Aussagenlogik, Axiome und Gesetze

Tautologie, Antilogie (Kontradiktion)

Tautologie, Antilogie

Tautologie, Antilogie

- Tautologie: Ausdruck, der für jede Belegung wahr ist
- Antilogie (Kontradiktion): Ausdruck, der für jede Belegung falsch ist

Tautologie, Antilogie (Kontradiktion)

Tautologie

Beispiel: $(\mathbf{a} \wedge \mathbf{b}) \Rightarrow \mathbf{a}$						
а	b	a∧b	$(\mathbf{a} \wedge \mathbf{b}) \Rightarrow \mathbf{a}$			
0	0	0	1			
0	1	0	1			
1	0	0	1			
1	1	1	1			

☐ Tautologie, Antilogie (Kontradiktion)

Antilogie (Kontradiktion)

Beispiel: $\mathbf{f} = [\neg \mathbf{a} \lor (\neg \mathbf{a} \land \mathbf{b})] \land \mathbf{a}$								
•	а	b	¬а	$(\neg a \wedge b)$	$\neg a \lor (\neg a \land b)$	f		
	0	0	1	0	1	0		
(0	1	1	1	1	0		
	1	0	0	0	0	0		
	1	1	0	0	0	0		

Überblick

- 1 Aussagenlogik, Axiome und Gesetze
- Normalformen
 Disjunktive Normalform (DNF)
 Konjunktive Normalform (KNF)
- 3 KV-Diagramme
- 4 Fuzzy-Logik

Normalformen

- Verschiedene Formen der Darstellung von logischen Aussagen möglich
- Normierte Darstellung sinnvoll
- Disjunktive Normalform
- Konjunktive Normalform
- Kommen mit AND, OR, NOT aus ⇒ wir müssen nicht alle logischen Operationen in Hardware implementieren!

Disjunktive Normalform (DNF)

DNF

- Vollkonjunktionen werden disjunktiv verknüpft
- Vollkonjunktionen = alle Variablen sind konjunktiv verknüpft
- ⇒ Variablen können negiert sein
 - Beispiel: $f(e_1, e_2, e_3) = (e_1 \Rightarrow e_2) \land (\neg e_1 \Leftrightarrow e_3)$

☐ Disjunktive Normalform (DNF)

Beispiel DNF

1.: Wahrheitstabelle								
#	<i>e</i> ₁	<i>e</i> ₂	<i>e</i> ₃	$e_1 \Rightarrow e_2$	$\neg e_1 \Leftrightarrow e_3$	$(e_1 \Rightarrow e_2) \wedge (\neg e_1 \Leftrightarrow e_3)$		
1	0	0	0	1	0	0		
2	0	0	1	1	1	1		
3	0	1	0	1	0	0		
4	0	1	1	1	1	1		
5	1	0	0	0	1	0		
6	1	0	1	0	0	0		
7	1	1	0	1	1	1		
8	1	1	1	1	0	0		

Disjunktive Normalform (DNF)

Beispiel DNF

2.: Zeilen auswählen, Vollkonjunktionen bilden

- Auswahl der Zeilen mit wahrem Ergebnis (= 1)
 - Zeile 2
 - Zeile 4
 - Zeile 7
- Variablen mit Wert 0 negieren, andere direkt übernehmen, und alle konjunktiv verbinden
- $\neg e_1 \wedge \neg e_2 \wedge e_3$, $\neg e_1 \wedge e_2 \wedge e_3$, $e_1 \wedge e_2 \wedge \neg e_3$

Disjunktive Normalform (DNF)

Beispiel DNF

2.: Zeilen auswählen, Vollkonjunktionen bilden

- Auswahl der Zeilen mit wahrem Ergebnis (= 1)
 - Zeile 2
 - Zeile 4
 - Zeile 7
- Variablen mit Wert 0 negieren, andere direkt übernehmen, und alle konjunktiv verbinden
- $\neg e_1 \wedge \neg e_2 \wedge e_3$, $\neg e_1 \wedge e_2 \wedge e_3$, $e_1 \wedge e_2 \wedge \neg e_3$

3.: Disjunktive Normalform

Einzelne "Zeilen" disjunktiv verbinden.

$$(\neg e_1 \wedge \neg e_2 \wedge e_3) \vee (\neg e_1 \wedge e_2 \wedge e_3) \vee (e_1 \wedge e_2 \wedge \neg e_3)$$

☐ Disjunktive Normalform (DNF)

Beispiel DNF

Vergleich										
$(\lnot e_1 \land \lnot e_2 \land e_3) \lor (\lnot e_1 \land e_2 \land e_3) \lor (e_1 \land e_2 \land \lnot e_3)$										
	(¬	C1 /\ '	¬ e 2 /	\ <i>e</i> 3) ∨ (¬e	1 / 62 / 63)	$\vee (e_1 \wedge e_2 \wedge \neg e_3)$				
#	<i>e</i> ₁	<i>e</i> ₂	<i>e</i> ₃	$e_1 \Rightarrow e_2$	$\neg e_1 \Leftrightarrow e_3$	$(e_1 \Rightarrow e_2) \land (\neg e_1 \Leftrightarrow e_3)$				
1	0	0	0	1	0	0				
2	0	0	1	1	1	1				
3	0	1	0	1	0	0				
4	0	1	1	1	1	1				
5	1	0	0	0	1	0				
6	1	0	1	0	0	0				
7	1	1	0	1	1	1				
8	1	1	1	1	0	0				

Konjunktive Normalform (KNF)

Konjunktive Normalform (KNF)

KNF

- Volldisjunktionen werden konjunktiv verknüpft
- Volldisjunktionen = alle Variablen sind disjunktiv verknüpft
- Beispiel: $f(e_1, e_2, e_3) = (e_1 \land e_2) \lor e_3$

Konjunktive Normalform (KNF)

Beispiel KNF

1.: Wahrheitstabelle $e_1 \wedge e_2 \mid (e_1 \wedge e_2) \vee e_3$ # e_1 e_2 e_3 0 0 0 2 0 0 3 5 0 6 0 8

Konjunktive Normalform (KNF)

Beispiel KNF

2.: Zeilen auswählen

- Auswahl der Zeilen mit falschem Ergebnis (= 0):
 - Zeile 1
 - Zeile 3
 - Zeile 5
- Variablen mit Wert 1 negieren, andere direkt übernehmen, und alle disjunktiv verbinden

Konjunktive Normalform (KNF)

Beispiel KNF

2.: Zeilen auswählen

- Auswahl der Zeilen mit falschem Ergebnis (= 0):
 - Zeile 1
 - Zeile 3
 - Zeile 5
- Variablen mit Wert 1 negieren, andere direkt übernehmen, und alle disjunktiv verbinden

3.: Konjunktive Normalform

Einzelne "Zeilen" konjunktiv verbinden.

$$(e_1 \lor e_2 \lor e_3) \land (e_1 \lor \neg e_2 \lor e_3) \land (\neg e_1 \lor e_2 \lor e_3)$$

Konjunktive Normalform (KNF)

Beispiel KNF

Vergleich

$$(e_1 \lor e_2 \lor e_3) \land (e_1 \lor \neg e_2 \lor e_3) \land (\neg e_1 \lor e_2 \lor e_3)$$

#	<i>e</i> ₁	<i>e</i> ₂	<i>e</i> ₃	$e_1 \wedge e_2$	$(e_1 \wedge e_2) \vee e_3$
1	0	0	0	0	0
2	0	0	1	0	1
3	0	1	0	0	0
4	0	1	1	0	1
5	1	0	0	0	0
6	1	0	1	0	1
7	1	1	0	1	1
8	1	1	1	1	1

Überblick

- 1 Aussagenlogik, Axiome und Gesetze
- 2 Normalformen
- KV-Diagramme
 Quine und McCluskey
 Einführung
 Beispiel
- 4 Fuzzy-Logik

KV-Diagramme

Quine und McCluskey

Verfahren nach Quine und McCluskey

Verfahren nach Quine und McCluskey

- Verfahren zum Vereinfachen von Funktionen
- Irrelevante Variablen aus Normalform eliminieren
- Geht von DNF aus
- Gezielt Terme der Art $(x \lor \neg x)$ erzeugen
- ⇒ Entsprechen 1. Fallen weg, wenn sie in einer Konjunktion vorkommen
- Weitere Schritte (hier nicht angeführt, bei Interesse siehe Literatur)

Verfahren nach Quine und McCluskey

$$(e_1 \wedge \neg e_2 \wedge e_3 \wedge e_4) \vee (e_1 \wedge \neg e_2 \wedge e_3 \wedge \neg e_4) =$$

Verfahren nach Quine und McCluskey

$$(e_1 \wedge \neg e_2 \wedge e_3 \wedge e_4) \vee (e_1 \wedge \neg e_2 \wedge e_3 \wedge \neg e_4) =$$

$$((e_1 \wedge \neg e_2 \wedge e_3) \wedge e_4) \vee ((e_1 \wedge \neg e_2 \wedge e_3) \wedge \neg e_4) \stackrel{\textit{Distr.Ges.}}{=}$$

Verfahren nach Quine und McCluskey

$$(e_1 \wedge \neg e_2 \wedge e_3 \wedge e_4) \vee (e_1 \wedge \neg e_2 \wedge e_3 \wedge \neg e_4) =$$

$$((e_1 \wedge \neg e_2 \wedge e_3) \wedge e_4) \vee ((e_1 \wedge \neg e_2 \wedge e_3) \wedge \neg e_4) \stackrel{\textit{Distr.Ges.}}{=}$$

$$(e_1 \wedge \neg e_2 \wedge e_3) \wedge (e_4 \vee \neg e_4) \overset{AxiomKompl.El.}{=}$$

Verfahren nach Quine und McCluskey

$$\begin{array}{c} (e_1 \wedge \neg e_2 \wedge e_3 \wedge \underline{e_4}) \vee (e_1 \wedge \neg e_2 \wedge e_3 \wedge \underline{\neg e_4}) = \\ \\ (\underline{(e_1 \wedge \neg e_2 \wedge e_3)} \wedge e_4) \vee (\underline{(e_1 \wedge \neg e_2 \wedge e_3)} \wedge \neg e_4) \overset{Distr.Ges.}{=} \\ \\ \underline{(e_1 \wedge \neg e_2 \wedge e_3)} \wedge (e_4 \vee \neg e_4) \overset{AxiomKompl.El.}{=} \\ \\ \underline{(e_1 \wedge \neg e_2 \wedge e_3)} \wedge 1 = \end{array}$$

Verfahren nach Quine und McCluskey

$$(e_{1} \wedge \neg e_{2} \wedge e_{3} \wedge \underline{e_{4}}) \vee (e_{1} \wedge \neg e_{2} \wedge e_{3} \wedge \underline{\neg e_{4}}) =$$

$$((\underline{e_{1} \wedge \neg e_{2} \wedge e_{3}}) \wedge e_{4}) \vee ((\underline{e_{1} \wedge \neg e_{2} \wedge e_{3}}) \wedge \neg e_{4}) \stackrel{Distr.Ges.}{=}$$

$$(\underline{e_{1} \wedge \neg e_{2} \wedge e_{3}}) \wedge (e_{4} \vee \neg e_{4}) \stackrel{AxiomKompl.El.}{=}$$

$$(\underline{e_{1} \wedge \neg e_{2} \wedge e_{3}}) \wedge 1 =$$

$$(\underline{e_{1} \wedge \neg e_{2} \wedge e_{3}}) \wedge 1 =$$

Einführung

KV-Diagramme

KV-Diagramme

- Graphische Veranschaulichung des Verfahrens von Quine und McCluskey
- Karnaugh und Veitch
- Für maximal 4 Variablen sinnvoll anwendbar
- Geschickte graphische Darstellung: Terme, die nach Quine/McCluskey zusammengefasst werden können, sind im KV-Diagramm direkt benachbart!
- 2ⁿ Felder bei *n* Eingangsvariablen

Prinzip

— Einführung

Jedes Feld entspricht einer Vollkonjunktion der DNF!

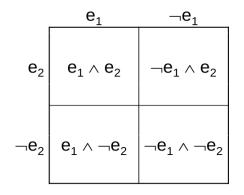


Abbildung: KV Diagramm für zwei Variablen

└KV-Diagramme └Einführung

Simples Beispiel

$$X = e_1 \wedge \neg e_2 \wedge e_3 \wedge \neg e_4$$

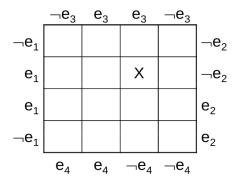


Abbildung: KV Diagramm für vier Variablen

└ Einführung

└- Einführung

Vorgehensweise

Vorgehensweise

1 Von DNF ausgehen (z.B.)

└- Einführung

Vorgehensweise

- 1 Von DNF ausgehen (z.B.)
- Pür jede in der DNF vorkommende Vollkonjunktion im KV-Diagramm Einser im entsprechendem Feld eintragen

– Einführung

Vorgehensweise

- 1 Von DNF ausgehen (z.B.)
- 2 Für jede in der DNF vorkommende Vollkonjunktion im KV-Diagramm Einser im entsprechendem Feld eintragen
- 3 Zusammenfassen möglichst vieler 1er in benachbarten^a Feldern zu Blöcken

Einführung

Vorgehensweise

- 1 Von DNF ausgehen (z.B.)
- 2 Für jede in der DNF vorkommende Vollkonjunktion im KV-Diagramm Einser im entsprechendem Feld eintragen
- 3 Zusammenfassen möglichst vieler 1er in benachbarten^a Feldern zu Blöcken
- ② Zusammengefasste Blöcke entsprechen den Vollkonjunktionen der neuen, minimierten DNF

^aauch außen herum!

Zweierblöcke

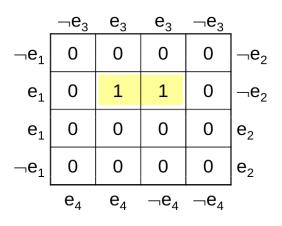


Abbildung: $e_1 \land \neg e_2 \land e_3$

∟ Zweierblöcke

Zweierblöcke

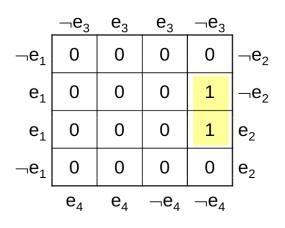


Abbildung: $e_1 \wedge \neg e_3 \wedge \neg e_4$

Zweierblöcke

Zweierblöcke

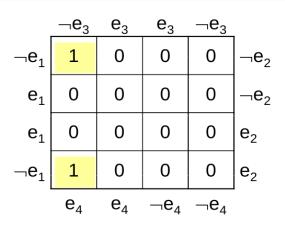


Abbildung: $\neg e_1 \land \neg e_3 \land e_4$

└ Viererblöcke

Viererblöcke

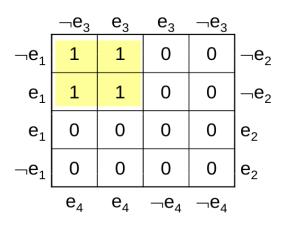


Abbildung: $\neg e_2 \land e_4$

└ Viererblöcke

Viererblöcke

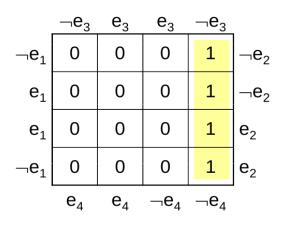


Abbildung: $\neg e_3 \land \neg e_4$

└ Viererblöcke

Viererblöcke

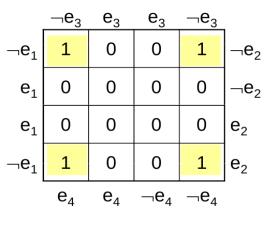


Abbildung: $\neg e_1 \land \neg e_3$

Achterblöcke

Achterblöcke

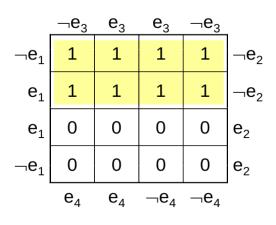


Abbildung: ¬e₂

Beispiel

Beispiel

$$f(e_1, e_2, e_3, e_4) = (e_1 \land \neg e_2 \land \neg e_3 \land e_4) \lor (e_1 \land \neg e_2 \land e_3 \land e_4) \lor (e_1 \land e_2 \land \neg e_3 \land e_4) \lor (e_1 \land e_2 \land \neg e_3 \land \neg e_4)$$

Beispiel

Beispiel

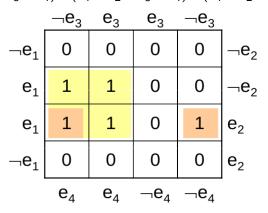
$$f(e_1, e_2, e_3, e_4) = (e_1 \land \neg e_2 \land \neg e_3 \land e_4) \lor (e_1 \land \neg e_2 \land e_3 \land e_4) \lor (e_1 \land e_2 \land \neg e_3 \land e_4) \lor (e_1 \land e_2 \land \neg e_3 \land \neg e_4)$$

	$\neg e_3$	e_3	e_3	$\neg e_3$	
$\neg e_1$	0	0	0	0	$\neg e_2$
e_1	1	1	0	0	¬e₂
e_1	1	1	0	1	e ₂
$\neg e_1$	0	0	0	0	e_2
'	e_4	e_4	$\neg e_4$	$\neg e_4$	•

Beispiel

Beispiel

$$f(e_1, e_2, e_3, e_4) = (e_1 \land \neg e_2 \land \neg e_3 \land e_4) \lor (e_1 \land \neg e_2 \land e_3 \land e_4) \lor (e_1 \land e_2 \land \neg e_3 \land e_4) \lor (e_1 \land e_2 \land \neg e_3 \land \neg e_4)$$



Minimiert: $(e_1 \wedge e_4) \vee (e_1 \wedge e_2 \wedge \neg e_3)$

Überblick

- 1 Aussagenlogik, Axiome und Gesetze
- 2 Normalformen
- 3 KV-Diagramme
- 4 Fuzzy-Logik

Literatur

- Informatik (Blieberger, Springer-Verlag): Kapitel 12
- alle Abbildungen hieraus entnommen

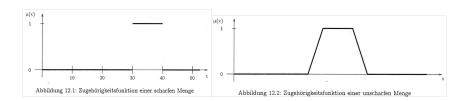
Fuzzy Logic

Fuzzy Logic

- Bisher: Boole'sche Algebra → zwei Wahrheitswerte
- Aber: reale Welt → nicht-exakte/unvollständige Datensätze
- Lotfi A. Zadeh (1965): Fuzzy Logik
- Idee: ersetze Zweiwertigkeit {0,1} durch Intervall [0,1]
- Anwendungsbereich: Regelungstechnik (Fuzzy Control)
 - → oft keine mathematisches Prozessmodell möglich
 - → stattdessen alltagssprachliche/linguistische Zustandsbeschreibung
- Beispiel Temperatur: sehr kalt / kalt / kühl / warm / sehr warm / heiß / sehr heiß

Fuzzy-Mengen

- Fuzzy-Menge: normierte Zugehörigkeitsfunktion mit beliebigen Werten zwischen 0 und 1
- Also: statt "Element x ist in Menge A enthalten oder nicht" jetzt Zugehörigkeitsmaß μ_A(x)

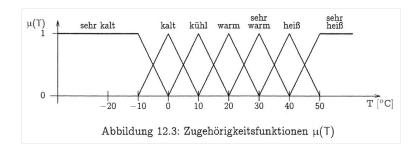


Fuzzy-Mengen

- Betrachte Zugehörigkeitsfunktion $\mu_A(x)$
- Mengen-Operationen (Durchschnitt, Vereinigung, Komplement) neu definiert:
 - $(A \cup B) = max\{\mu_A(x), \mu_B(x)\}$
 - $(A \cap B) = min\{\mu_A(x), \mu_B(x)\}$
 - $\overline{A}(x) = 1 \mu_A(x)$
- Beobachtung: bisherige (zweiwertige) Logik als Spezialfall enthalten
 - → Fuzzy Logic als Erweiterung der Boole'schen Algebra!

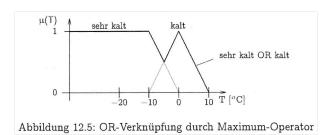
Fuzzyfizierung

- Idee: Zugehörigkeitsfunktion für jede Kategorie
- können unterschiedlich aussehen
- typische Form: stückweise linear
- Normierung: Summe der Zugehörigkeitsmaße für jeden scharfen Wert = 1



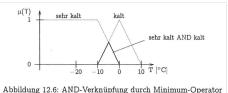
Fuzzy-Operatoren

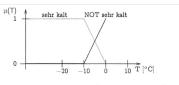
- Idee: Verknüpfung von Fuzzy-Sets ein und derselben Grundmenge
- OR-Verknüpfung: Maximum-Operator
 A OR B ≡ A ∪ B ≡ max(μ_A(x), μ_B(x)) mit x ∈ X



Fuzzy-Operatoren

- AND-Verknüpfung: Minimum-Operator
 A AND B ≡ A ∩ B ≡ min(μ_A(x), μ_B(x)) mit x ∈ X
- Komplement: NOT $A \equiv 1 \mu_A(x)$ mit $x \in X$
- Kommutativ- und Assoziativgesetz weiterhin gültig!





Fuzzy-Relationen

- Bisher: Fuzzy-Sets auf gleicher Grundmenge
- Wanted: Implikation → IF p THEN c
- Prämisse p durch Fuzzy-Set X₁, Conclusio c durch Fuzzy-Set X₂ beschrieben
- Idee: Kartesisches Produkt $X = X_1 \times X_2$
- Ergebnis: Fuzzy-Relation $\mu_R(x_1, x_2): X_1 \times X_2 \rightarrow [0, 1]$
- Zugehörige Operatoren abhängig vom Anwendungsfall, z.B.
 - Minimum-Operator: $\mu_{min}(x_1, x_2) = \min\{\mu_1(x_1), \mu_2(x_2)\}$
 - Produkt-Operator: $\mu_{prod}(x_1, x_2) = \mu_1(x_1) \cdot \mu_2(x_2)$

Regelbasis

 Idee: Beschreibe Produktionsregeln R₁, R₂ usw. als Fuzzy-Relationen

 R_k : IF p_k THEN c_k

- Beispiel: Temperaturregler
 IF (Temperatur = heiß AND Gradient = hoch) OR
 Temperatur = sehr heiß
 THEN Ventilstellung = ganz zu
- Regelbasis endlicher Größe
- keine Lösung von Differentialgleichungen etc. notwendig

Inferenz

- Inferenz = Auswertung der Regeln plus Zusammenfassung der Handlungsanweisungen → Entscheidungsstrategie
- Schritt 1: Ermittlung der aktiven Regeln (Prämissen mit Erfülltheitsgrad > 0)
- Schritt 2a: Ermittlung der einzelnen Ausgangs-Fuzzymengen
- Schritt 2b: Wahrheitswert jeder aktiven Regel = Maß, in dem die Regel "feuert"
- Schritt 3: Ermittlung der resultierenden Ausgangs-Fuzzymenge

Inferenz

- Strategie 1: MAX-MIN Inferenz
 - OR \rightarrow max
 - AND \rightarrow min
 - Implikation → min
- Strategie 2: MAX-PROD Inferenz
 - OR \rightarrow max
 - AND \rightarrow min
 - Implikation \rightarrow ·

MAX-MIN Inferenz vs MAX-PROD Inferenz

- Strategie 1: MAX-MIN Inferenz
 - OR \rightarrow max
 - AND \rightarrow min
 - Implikation → min
- Strategie 2: MAX-PROD Inferenz
 - OR \rightarrow max
 - AND \rightarrow min
 - Implikation → ·

Beispiel

- Annahme: Temperatur = 10° C, Temperaturabfall $\delta = 2^{\circ}$ C/min
- Aktive Regel 1: IF T = kalt AND δ = negativ THEN ξ = mittel
- Aktive Regel 2: IF T = sehr kalt OR δ = null THEN ξ = offen

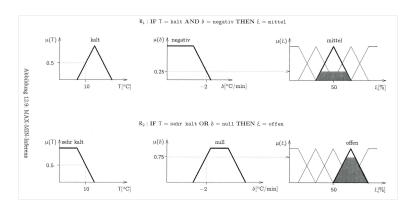


Abbildung: MAX-MIN Inferenz

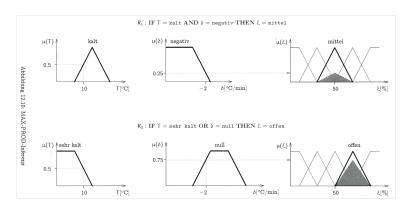
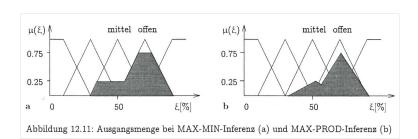


Abbildung: MAX-PROD Inferenz

Inferenz: Ergebnis

- Beachte: einzelne Ausgangsmengen ergeben sich
 - bei MAX-MIN Inferenz durch den Minimumoperator (aus Prämissen) angewandt auf Conclusio
 - → Zugehörigkeitsmaß wird oben "abgeschnitten"
 - bei MAX-PROD Inferenz durch den Produktoperator
 → Zugehörigkeitsmaß wird gleichmäßig "gestaucht"



Defuzzifizierung

- Letzter Schritt: Ermittlung eines scharfen Wertes aus dem unscharfen Ergebnis
- Mehrere Methoden
 - Maximum Height (maximale Höhe): Ausgangsgröße aus maximalem Wert der Ausgangsmenge
 - Mean of Maximum (Maximum-Mittelwert): arithmetisches Mittel aller Werte, für die die Zugehörigkeitsfunktion maximal ist
 - Center of Gravity (Schwerpunktmethode): x-Wert des Flächenschwerpunkts

