VO 050041:

Technische Grundlagen der Informatik

Begleitende Folien zur Vorlesung
Wintersemester 2016/17

Vortragende: Peter Reichl, Andreas Janecek

Zuletzt aktualisiert: 9. Dezember 2016

Teil 2:

Zahlensysteme und -darstellungen

- 1 Zahlensysteme
- 2 Konvertierung zwischen Zahlensystemen
- 3 Arithmetische Operationen im Dualsystem
- 4 Zahlendarstellungen am Computer
- **5** Numerik

Literatur

- Mikroprozessortechnik (Wüst, Vieweg+Teubner): Kapitel 2
- Informatik (Blieberger, Springer-Verlag): Kapitel 7+8
- (Computerarchitektur (Tanenbaum): Anhang A und B)

- 1 Zahlensysteme Additionssysteme Stellenwertsysteme
- 2 Konvertierung zwischen Zahlensystemen
- 3 Arithmetische Operationen im Dualsystem
- 4 Zahlendarstellungen am Computer
- 6 Numerik

Additionssysteme: Beispiel

Römisches Zahlensystem

- Wert einer Zahl durch Form und Anzahl der Zeichen (Symbole) bestimmt
- I=1, V=5, X=10, L=50, C=100, D=500, M=1000
- XLIX = 49 = -10 + 50 1 + 10
- CDXCV = 495 = -100+500-10+100+5
- MMXIV = 2014 = 1000+1000+10+1-1+5

Additionssysteme: Überblick

Additionssysteme

- Addition einfach, kein Übertrag
- Restliche Operationen m

 ühsam
- Darstellung großer Zahlen mühsam
- Keine Null!
- Maschinelle Darstellung?!

Stellenwertsysteme

Stellenwertsysteme: Überblick

- Wert einer Zahl durch Form und Position der Zeichen (Symbole) bestimmt
- "Positionssystem", "Polyades Zahlensystem"
- Basis B: B ∈ N; B ≥ 2
- Zahl x wird in Potenzen von B zerlegt
- B verschiedene Symbole, Ziffern 0 bis B − 1
- n ... Anzahl der Ziffern, b_i ... Werte der einzelnen Ziffern

$$x = \sum_{i=0}^{n-1} b_i \cdot B^i = b_0 \cdot B^0 + b_1 \cdot B^1 + b_2 \cdot B^2 + \dots + b_{n-1} \cdot B^{n-1}$$

Stellenwertsysteme: Beispiele

Dezimalsystem

Basis 10

$$x = 2017_{10} = 2 \cdot 10^3 + 0 \cdot 10^2 + 1 \cdot 10^1 + 7 \cdot 10^0$$

Stellenwertsysteme: Beispiele

Binärsystem ("Dualsystem")

Basis 2

$$x = 11001_2 = 1 \cdot 2^4 + 1 \cdot 2^3 + 0 \cdot 2^2 + 0 \cdot 2^1 + 1 \cdot 2^0 = 25_{10}$$

Stellenwertsysteme: Beispiele

Binärsystem ("Dualsystem")

Basis 2

$$x = 11001_2 = 1 \cdot 2^4 + 1 \cdot 2^3 + 0 \cdot 2^2 + 0 \cdot 2^1 + 1 \cdot 2^0 = 25_{10}$$

Nur zwei verschiedene Zustände!

- = Minimalvariante
- technisch am einfachsten realisierbar

Stellenwertsysteme: Beispiele

Oktalsystem

Basis 8

$$x = 315_8 = 3 \cdot 8^2 + 1 \cdot 8^1 + 5 \cdot 8^0 = 205_{10}$$

Stellenwertsysteme: Beispiele

Hexadezimalsystem

Hexadezimalsystem

Hex: 0 1 2 ... 9 **A B C D E F 10 Dez**: 0 1 2 ... 9 10 11 12 13 14 15 16

Basis 16

$$x = F1_{16} = 0 \times F1 = 15 \cdot 16^{1} + 1 \cdot 16^{0} = 241_{10}$$

Gebrochene Zahlen: Überblick

- Bei gebrochenen Zahlen trennt das Komma den ganzzahligen vom gebrochenen Teil
- Basis B; B ≥ 2; Ziffern 0 bis B − 1
- N: Anzahl der signifikanten Stellen vor dem Komma
- M: Anzahl der signifikanten Stellen nach dem Komma

$$x = \sum_{i=-M} b_i \cdot B^i = b_{-M} \cdot B^{-M} + b_{-M+1} \cdot B^{-M+1} + b_{-M+2} \cdot B^{-M+2} + \dots + b_0 + b_1 \cdot B + b_2 \cdot B^2 + \dots + \dots + b_{N-2} \cdot B^{N-2} + b_{N-1} \cdot B^{N-1}$$

Stellenwertsysteme: Gebrochene Zahlen

Gebrochene Zahlen: Beispiel

Gebrochene Dezimalzahl

$$x = 23,42_{10} = 2 \cdot 10^{-2} + 4 \cdot 10^{-1} + 3 \cdot 10^{0} + 2 \cdot 10^{1} = 23,42_{10}$$

Stellenwertsysteme: Gebrochene Zahlen

Gebrochene Zahlen: Beispiel

Gebrochene Dezimalzahl

$$x = 23,42_{10} = 2 \cdot 10^{-2} + 4 \cdot 10^{-1} + 3 \cdot 10^{0} + 2 \cdot 10^{1} = 23,42_{10}$$

Gebrochene Binärzahl

$$x = 10,011_2 = 1 \cdot 2^{-3} + 1 \cdot 2^{-2} + 0 \cdot 2^{-1} + 0 \cdot 2^{0} + 1 \cdot 2^{1} = 2,375_{10}$$

- Zahlensysteme
- 2 Konvertierung zwischen Zahlensystemen Basis 10 ⇒ Basis X ⇒ 10 Zwischen Basen 2, 8, 16
- 3 Arithmetische Operationen im Dualsystem
- 4 Zahlendarstellungen am Computer
- 6 Numerik

Methode für Ganzzahlen

Basis $10 \Rightarrow 2$

- (Ganz)Zahl so lange durch 2 dividieren, bis 0 erreicht
- Jeweilige Reste (rückwärts gelesen) ergeben Binärzahl

Basis $2 \Rightarrow 10$

- Potenzen von 2 summieren, entsprechen den gesetzten Bits der Binärzahl
- Siehe Folien zu Stellenwertsysteme

VO 050041: Technische Grundlagen der Informatik

Konvertierung zwischen Zahlensystemen

Basis 10 ⇒ Basis X ⇒ 10

Quotient	Rest
373	

Basis 10 ⇒ Basis X ⇒ 10

Quotient	Rest
373	
186	1
	1

Basis 10 ⇒ Basis X ⇒ 10

Quotient	Rest
373	
186	1
93	0
	1

Konvertierung zwischen Zahlensystemen
 Basis 10 ⇒ Basis X ⇒ 10

Quotient	Rest
373	
186	1
93	0
46	1
	l

∟Basis 10 ⇒ Basis X ⇒ 10

Quotient	Rest
373	
186	1
93	0
46	1
23	0
'	•

Quotient	Rest
373	
186	1
93	0
46	1
23	0
11	1
'	

Konvertierung zwischen Zahlensystemen

Basis $10 \Rightarrow Basis X \Rightarrow 10$

Quotient	Rest
373	
186	1
93	0
46	1
23	0
11	1
5	1
	•

Konvertierung zwischen Zahlensystemen

Basis $10 \Rightarrow Basis X \Rightarrow 10$

0	D1
Quotient	Rest
373	
186	1
93	0
46	1
23	0
11	1
5	1
2	1

Konvertierung zwischen Zahlensystemen

Basis $10 \Rightarrow Basis X \Rightarrow 10$

Quotient	Rest
373	
186	1
93	0
46	1
23	0
11	1
5	1
2	1
1	0

Basis 10 ⇒ Basis X ⇒ 10

Beispiel: 373₁₀

Quotient	Rest
373	
186	1
93	0
46	1
23	0
11	1
5	1
2	1
1	0
0	1

 $373_{10} = 101110101_2$ (Tabelle von unten nach oben lesen!)

Methode für Ganzzahlen

Basis 10 ⇒ 16

- Zahl so lange durch 16 dividieren, bis 0 erreicht
- Jeweilige Reste ergeben Hexadezimalzahl
- Achtung: falls Rest > 9 → durch entspr. Buchstaben ersetzen!

Basis $16 \Rightarrow 10$

- Potenzen von 16 summieren
- Siehe Folien zu Stellenwertsysteme

VO 050041: Technische Grundlagen der Informatik

Konvertierung zwischen Zahlensystemen

Basis $10 \Rightarrow Basis X \Rightarrow 10$

Quotient	Rest
373 : 16 = 23	5

Basis 10 ⇒ Basis X ⇒ 10

Quotient	Rest
373 : 16 = 23	5
23 : 16 = 1	7
	· ·

Beispiel: 373₁₀

Quotient	Rest
373 : 16 = 23	5
23 : 16 = 1	7
1:16 = 0	1

 $373_{10} = 175_{16}$ (Tabelle von unten nach oben lesen!)

Quotient	Rest
2702 : 16 = 168	14 (E)

4 (E)
8

Beispiel: 2702₁₀

Quotient	Rest
2702 : 16 = 168	14 (E)
168 : 16 = 10	8
10 : 16 = 0	10 (A)

 $2702_{10} = A8E_{16}$ (Tabelle von unten nach oben lesen!)

Methode für Gebrochene Zahlen

Basis $10 \Rightarrow 2$

Basis 10 ⇒ Basis X ⇒ 10

- Ganzzahlen (Zahlen links vom Komma) trennen
- ⇒ "normale" Umrechnung
 - Ziffernfolge rechts vom Komma kann nicht immer exakt berechnet werden
- ⇒ Häufig nur Näherungswert möglich

Basis $10 \Rightarrow Basis X \Rightarrow 10$

Methode für Gebrochene Zahlen

Basis $10 \Rightarrow 2$

- Ganzzahlen (Zahlen links vom Komma) trennen
- ⇒ "normale" Umrechnung
 - Ziffernfolge rechts vom Komma kann nicht immer exakt berechnet werden
- ⇒ Häufig nur Näherungswert möglich

Einfache Beispiele für exakte Umrechnung

Dezimalsystem	Dualsystem
0,5	0, 1 ₂
0,25	0,012
0,125	0,0012

-Konvertierung zwischen Zahlensystemen

└Zwischen Basen 2, 8, 16

Basen mit GGT 2

Abkürzung

• Basis 2 \Rightarrow Basis 8: Dreiergruppen bilden (2³ = 8)

$$0\underbrace{111}_{7}\underbrace{101}_{5}\underbrace{110}_{6}\underbrace{100}_{4}\underbrace{011}_{3_{8}}$$

-Konvertierung zwischen Zahlensystemen

└Zwischen Basen 2, 8, 16

Basen mit GGT 2

Abkürzung

Basis 2 ⇒ Basis 8: Dreiergruppen bilden (2³ = 8)

$$0\underbrace{111}_{7}\underbrace{101}_{5}\underbrace{110}_{6}\underbrace{100}_{4}\underbrace{011}_{3_{8}}$$

Basis 2 ⇒ Basis 16: Vierergruppen bilden (2⁴ = 16)

$$\underbrace{0111}_{7}\underbrace{1011}_{B}\underbrace{1010}_{A}\underbrace{0011}_{3_{16}}$$

-Konvertierung zwischen Zahlensystemen

└Zwischen Basen 2, 8, 16

Basen mit GGT 2

Abkürzung

Basis 2 ⇒ Basis 8: Dreiergruppen bilden (2³ = 8)

$$0\underbrace{111}_{7}\underbrace{101}_{5}\underbrace{110}_{6}\underbrace{100}_{4}\underbrace{011}_{3_{8}}$$

Basis 2 ⇒ Basis 16: Vierergruppen bilden (2⁴ = 16)

$$\underbrace{0111}_{7}\underbrace{1011}_{B}\underbrace{1010}_{A}\underbrace{0011}_{3_{16}}$$

Geht natürlich auch in die andere Richtung!

Überblick

- 1 Zahlensysteme
- 2 Konvertierung zwischen Zahlensystemen
- Arithmetische Operationen im Dualsystem Exkurs: Bits und Bytes Addition Subtraktion Einfache Multiplikation/Division
- 4 Zahlendarstellungen am Computer
- 6 Numerik

Exkurs: Bits und Bytes

Bit

- binary digit
- Zwei Zustände: "0" und "1"
- 1 bit ⇒ 2 Zustände, 2 bit ⇒ 4 Zustände,
 3 bit ⇒ 8 Zustände, ..., n bit ⇒ 2ⁿ Zustände

Vielfache von Bit											
	De	zimalpräfix	В	inärpräfix							
	Name	Symbol	Wert	Name	Symbol	Wert					
•	Kilobit	kbit	10 ³	Kibibit	Kibit	2 ¹⁰					
	Megabit	Mbit	10 ⁶	Mebibit	Mibit	2 ²⁰					
	Gigabit	Gbit	10 ⁹	Gibibit	Gibit	2 ³⁰					

Exkurs: Bits und Bytes

Byte

Folge von (üblicherweise) 8 Bit ⇒ "Oktett"

1

http://www.teach-ict.com/gcse_computing/ocr/214_
representing_data/units/miniweb/images/bitbyte.jpg

VO 050041: Technische Grundlagen der Informatik

- Arithmetische Operationen im Dualsystem

Exkurs: Bits und Bytes

Byte

Vielfache von Byte. VORSICHT: Oft ist unklar welcher Präfix tatsächlich verwendet wird!

Dez	zimalprä	fix	Binärpräfix				
Name	Sym.	Wert	Name	Sym.	Wert		
Kilobyte	kB	10 ³ Byte	Kibibyte	KiB	2 ¹⁰ Byte		
Megabyte	MB	10 ⁶ Byte	Mebibyte	MiB	2 ²⁰ Byte		
Gigabyte	GB	109 Byte	Gibibyte	GiB	2 ³⁰ Byte		

Achtung! Erhebliche Unterschiede

Mit ansteigender Größe der Dezimal- und Binärpräfixe wird die Unterscheidung bedeutender

☐ Addition

Addition im Dualsystem

Additionstabelle						
	Α	+	В	=	Übertrag	Σ
•	0	+	0	=	0	0
	0	+	1	=	0	1
	1	+	0	=	0	1
	1	+	1	=	1	0

☐ Addition

Addition im Dualsystem

Additionstabelle								
	Α	+	В	=	Übertrag	Σ		
	0	+	0	=	0	0		
	0	+	1	=	0	1		
	1	+	0	=	0	1		
	4		4		4	_		

Übertrag (engl. carry) bei nächsthöherer Stelle berücksichtigen!

VO 050041: Technische Grundlagen der Informatik

- Arithmetische Operationen im Dualsystem

Addition

Addition im Dualsystem

Beispiel: Zwei 8 Bit Dualzahlen addieren

VO 050041: Technische Grundlagen der Informatik
Arithmetische Operationen im Dualsystem

Addition

Addition im Dualsystem

Beispiel: Zwei 8 Bit Dualzahlen addieren

1010110

VO 050041: Technische Grundlagen der Informatik
Arithmetische Operationen im Dualsystem

Addition

Addition im Dualsystem

Beispiel: Zwei 8 Bit Dualzahlen addieren

1 0 1 0 1 1 0 0 + 1 0 0 1 1 0 1 1

Addition im Dualsystem

Beispiel: Zwei 8 Bit Dualzahlen addieren

		1	0	1	0	1	1	0	0
+		1	0	0	1	1	0	1	1
	1	0	1	0	0	0	1	1	1

Addition

Addition im Dualsystem

Beispiel: Zwei 8 Bit Dualzahlen addieren

Carry-Bit

- Ergebnis kann 9 Bit lang sein!
- Wird in einem Spezialregister gespeichert
- · Muss nach Operation ausgelesen werden
- Ansonsten würden wir most significant bit verlieren und einen Überlauf haben!

Most/Least Significant Bit

msb und lsb

- msb = most significant bit = höchstwertiges bit
- lsb = least significant bit = niedrigstwertiges bit

Addition

Most/Least Significant Bit

msb und lsb

- msb = most significant bit = höchstwertiges bit
- lsb = least significant **bit** = niedrigstwertiges bit

Dualsystem

100112

Most/Least Significant Bit

msb und Isb

- msb = most significant bit = höchstwertiges bit
- lsb = least significant **bit** = niedrigstwertiges bit

Dualsystem

 $10011_2 = 1 \cdot 2^4$

Most/Least Significant Bit

msb und lsb

- msb = most significant bit = höchstwertiges bit
- lsb = least significant bit = niedrigstwertiges bit

$$10011_2 = 1 \cdot 2^4 + 0 \cdot 2^3$$

Most/Least Significant Bit

msb und lsb

- msb = most significant bit = höchstwertiges bit
- lsb = least significant bit = niedrigstwertiges bit

$$10011_2 = 1 \cdot 2^4 + 0 \cdot 2^3 + 0 \cdot 2^2$$

Most/Least Significant Bit

msb und Isb

- msb = most significant bit = höchstwertiges bit
- lsb = least significant bit = niedrigstwertiges bit

$$10011_2 = 1 \cdot 2^4 + 0 \cdot 2^3 + 0 \cdot 2^2 + 1 \cdot 2^1$$

Most/Least Significant Bit

msb und lsb

- msb = most significant bit = höchstwertiges bit
- lsb = least significant bit = niedrigstwertiges bit

$$10011_2 = 1 \cdot 2^4 + 0 \cdot 2^3 + 0 \cdot 2^2 + 1 \cdot 2^1 + 1 \cdot 2^0$$

Addition

Most/Least Significant Bit

msb und lsb

- msb = most significant bit = höchstwertiges bit
- lsb = least significant **bit** = niedrigstwertiges bit

Dualsystem

$$10011_2 = 1 \cdot 2^4 + 0 \cdot 2^3 + 0 \cdot 2^2 + 1 \cdot 2^1 + 1 \cdot 2^0$$

Vergleich: Dezimalsystem

17564₁₀

Addition

Most/Least Significant Bit

msb und lsb

- msb = most significant bit = höchstwertiges bit
- lsb = least significant bit = niedrigstwertiges bit

Dualsystem

$$10011_2 = 1 \cdot 2^4 + 0 \cdot 2^3 + 0 \cdot 2^2 + 1 \cdot 2^1 + 1 \cdot 2^0$$

$$17564_{10} = 1 \cdot 10^4$$

Most/Least Significant Bit

msb und lsb

- msb = most significant bit = höchstwertiges bit
- lsb = least significant bit = niedrigstwertiges bit

Dualsystem

$$10011_2 = 1 \cdot {\color{red}2^4} + 0 \cdot 2^3 + 0 \cdot 2^2 + 1 \cdot 2^1 + 1 \cdot {\color{red}2^0}$$

$$17564_{10} = 1 \cdot 10^4 + 7 \cdot 10^3$$

Most/Least Significant Bit

msb und Isb

- msb = most significant bit = höchstwertiges bit
- lsb = least significant bit = niedrigstwertiges bit

Dualsystem

$$10011_2 = 1 \cdot 2^4 + 0 \cdot 2^3 + 0 \cdot 2^2 + 1 \cdot 2^1 + 1 \cdot 2^0$$

$$17564_{10} = 1 \cdot 10^4 + 7 \cdot 10^3 + 5 \cdot 10^2$$

Most/Least Significant Bit

msb und lsb

- msb = most significant bit = höchstwertiges bit
- lsb = least significant bit = niedrigstwertiges bit

Dualsystem

$$10011_2 = 1 \cdot 2^4 + 0 \cdot 2^3 + 0 \cdot 2^2 + 1 \cdot 2^1 + 1 \cdot 2^0$$

$$17564_{10} = 1 \cdot 10^4 + 7 \cdot 10^3 + 5 \cdot 10^2 + 6 \cdot 10^1$$

Most/Least Significant Bit

msb und lsb

- msb = most significant bit = höchstwertiges bit
- lsb = least significant bit = niedrigstwertiges bit

Dualsystem

$$10011_2 = 1 \cdot 2^4 + 0 \cdot 2^3 + 0 \cdot 2^2 + 1 \cdot 2^1 + 1 \cdot 2^0$$

$$17564_{10} = 1 \cdot 10^4 + 7 \cdot 10^3 + 5 \cdot 10^2 + 6 \cdot 10^1 + 4 \cdot 10^0$$

Most/Least Significant Byte

Byte

1 byte = 8 bit, auch Oktett genannt

MSB und LSB

- MSB = Most Significant Byte = h\u00f6chstwertiges Byte
- LSB = Least Significant Byte = niedrigstwertiges Byte

Achtung auf die Schreibweise

msb/lsb vs. MSB/LSB

└-Subtraktion

Subtraktion im Dualsystem

Subtraktion

- Prinzipiell ist eine Subtraktion im Dualsystem relativ einfach durchführbar (negatives Ergebnis möglich!)
- Rechner können keine direkte Subtraktion durchführen (würde zusätzliche Schaltungen erfordern)
- Subtraktion auf Addition zurückführbar
- Komplement des Subtrahenden wird zum Minuenden addiert
- Komplementbildung im Dualsystem besonders einfach (Invertierung bzw. NOT)
- Einerkomplement vs. Zweierkomplement

└-Subtraktion

Stellenkomplement ("Einerkomplement")

Stellenkomplement $\overline{B-1}$

- Nullen und Einser werden vertauscht
- Stellenkomplement im Binärsystem auch "Einerkomplement" genannt
- Addition des Komplements B-1 zur urspr. Zahl B ergibt immer höchstzulässige Zahl - ergibt sich aus der Definition!

 \sqsubseteq Subtraktion

Stellenkomplement ("Einerkomplement")

Stellenkomplement $\overline{B-1}$

- Nullen und Einser werden vertauscht
- Stellenkomplement im Binärsystem auch "Einerkomplement" genannt
- Addition des Komplements B-1 zur urspr. Zahl B ergibt immer höchstzulässige Zahl - ergibt sich aus der Definition!

-Subtraktion

Stellenkomplement ("Einerkomplement")

Stellenkomplement $\overline{B-1}$

- Nullen und Einser werden vertauscht
- Stellenkomplement im Binärsystem auch "Einerkomplement" genannt
- Addition des Komplements B-1 zur urspr. Zahl B ergibt immer höchstzulässige Zahl - ergibt sich aus der Definition!

$$B = 1 \ 0 \ 1 \ 0_2$$

Subtraktion

Stellenkomplement ("Einerkomplement")

Stellenkomplement $\overline{B-1}$

- Nullen und Einser werden vertauscht
- Stellenkomplement im Binärsystem auch "Einerkomplement" genannt
- Addition des Komplements B-1 zur urspr. Zahl B ergibt immer höchstzulässige Zahl - ergibt sich aus der Definition!

$$\begin{array}{rcl}
B & = 1 & 0 & 1 & 0_2 \\
+ & \overline{B-1} & = 0 & 1 & 0 & 1_2
\end{array}$$

└-Subtraktion

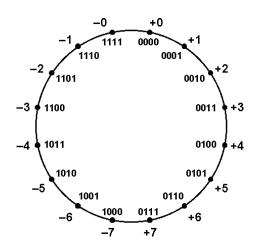
Stellenkomplement ("Einerkomplement")

Stellenkomplement $\overline{B-1}$

- Nullen und Einser werden vertauscht
- Stellenkomplement im Binärsystem auch "Einerkomplement" genannt
- Addition des Komplements B-1 zur urspr. Zahl B ergibt immer höchstzulässige Zahl - ergibt sich aus der Definition!

Subtraktion

Stellenkomplement ("Einerkomplement")



└-Subtraktion

Stellenkomplement ("Einerkomplement")

Eigenschaften

- Zwei Darstellungen für Zahl 0
- Einmal mit positivem und einmal mit negativem Vorzeichen
- ⇒ Redundanz (begrenzte Anzahl an Bits)
- Bringt Probleme, wenn bei einer Operation die Null durchschritten wird

 \sqsubseteq Subtraktion

Stellenkomplement ("Einerkomplement")

Eigenschaften

- Zwei Darstellungen für Zahl 0
- Einmal mit positivem und einmal mit negativem Vorzeichen
- ⇒ Redundanz (begrenzte Anzahl an Bits)
- Bringt Probleme, wenn bei einer Operation die Null durchschritten wird

Verbesserung: Zweierkomplement

 Diese Probleme werden bei der Kodierung von Zahlen in der Zweierkomplementdarstellung vermieden

 \square Subtraktion

Zweierkomplement

Zweierkomplement \overline{B}

- Vollständiges Komplement zur jeweiligen Basis
- ⇒ Dezimalsystem: 10, Binärsystem: 2, ...
 - Basis 2: "Zweierkomplement"
 - Berechnung: Stellenkomplement + 1
 - Addition von B zur urspr. Zahl B ergibt immer Null

-Subtraktion

Zweierkomplement

Zweierkomplement \overline{B}

- Vollständiges Komplement zur jeweiligen Basis
- ⇒ Dezimalsystem: 10, Binärsystem: 2, ...
 - Basis 2: "Zweierkomplement"
 - Berechnung: Stellenkomplement + 1
 - Addition von B zur urspr. Zahl B ergibt immer Null

Subtraktion

Zweierkomplement

Zweierkomplement \overline{B}

- Vollständiges Komplement zur jeweiligen Basis
- ⇒ Dezimalsystem: 10, Binärsystem: 2, ...
 - Basis 2: "Zweierkomplement"
 - Berechnung: Stellenkomplement + 1
 - Addition von B zur urspr. Zahl B ergibt immer Null

$$B = 1 \ 0 \ 1 \ 0_2$$

 \sqsubseteq Subtraktion

Zweierkomplement

Zweierkomplement \overline{B}

- Vollständiges Komplement zur jeweiligen Basis
- ⇒ Dezimalsystem: 10, Binärsystem: 2, ...
 - Basis 2: "Zweierkomplement"
 - Berechnung: Stellenkomplement + 1
 - Addition von B zur urspr. Zahl B ergibt immer Null

$$\frac{B}{B}$$
 = 1 0 1 0₂
= 0 1 1 0₂

□ Subtraktion

Zweierkomplement

Zweierkomplement \overline{B}

- Vollständiges Komplement zur jeweiligen Basis
- ⇒ Dezimalsystem: 10, Binärsystem: 2, ...
 - Basis 2: "Zweierkomplement"
 - Berechnung: Stellenkomplement + 1
 - Addition von B zur urspr. Zahl B ergibt immer Null

 \sqsubseteq Subtraktion

Zweierkomplement

Trick zur schnelleren Umwandlung (Wikipedia)

- ... einer negativen in eine positive Binärzahl oder umgekehrt von Hand:
- → Von rechts angefangen, alle Nullen und die erste Eins abschreiben und alle nachfolgenden Stellen invertieren

$$B = 0 0 1 0 1 0 0 0_2$$

 $\overline{B} = 1 1 0 1 1 0 0 0_2$

Zweierkomplement

Interpretation des "Vorzeichenbits" (Wikipedia)

- Alle Bits haben die gleiche Wertigkeit wie bei positiver Darstellung
- ABER: Das msb (most significant bit = höchstwertige bit) erhält die negative Wertigkeit
- ⇒ msb wird abgezogen (falls es 1 ist)

$$B \ = \ \ 0 \ \ 0 \ \ 1 \ \ 0 \ \ 1 \ \ 0 \ \ 0_2 \ = \ +40_{10}$$

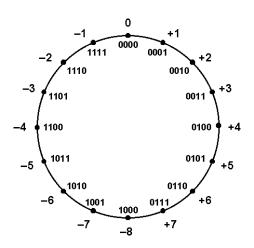
$$\overline{B}$$
 = 1 1 0 1 1 0 0 0₂ = -40_{10}

$$B = 32 + 8 = +40_{10}$$

$$\overline{B} = -128 + 64 + 16 + 8 = -40_{10}$$

Subtraktion

Zweierkomplement



VO 050041: Technische Grundlagen der Informatik
Arithmetische Operationen im Dualsystem

Subtraktion

Komplemente

Es gilt:

Subtraktion

Komplemente

$$B + \overline{B-1} + 1 = 0$$

Subtraktion

Komplemente

Es gilt:

$$B + \overline{B-1} + 1 = 0$$

$$B + \overline{B} = 0$$

□ Subtraktion

Komplemente

Es gilt:

$$B + \overline{B-1} + 1 = 0$$

$$B + \overline{B} = 0$$

$$\overline{B} = -B$$

Zweierkomplement auch <u>interpretierbar</u> als negative <u>Größe</u> der Zahl *B*!

Komplement im Dezimalsystem

Differenz zweier zweistelliger Zahlen im Dezimalsystem:

$$b - a = b - a + 100 - 100 \tag{1}$$

$$b-a = b+(100-a)-100$$
 (2)

$$b-a = b+ \overline{a} - 100 \tag{3}$$

- Differenz (100 -a), d.h. die Differenz zur **nächsthöheren** Zehnerpotenz = Komplement von a, Symbol: \overline{a}
- Anstatt b a rechnen wir $b + \overline{a}$ und subtrahieren anschließend 100.
- Subtraktion von 100 → Übertrag in dritter Stelle streichen

Subtraktion

Komplement im Dezimalsystem

Beispiel: 17 – 14

Subtraktion

Komplement im Dezimalsystem

Beispiel: 17 – 14

17₁₀

Subtraktion

Komplement im Dezimalsystem

Beispiel: 17 – 14

17₁₀

- 14₁₀

Subtraktion

Komplement im Dezimalsystem

Beispiel: 17 – 14

17₁₀

- 14₁₀

-Subtraktion

Komplement im Dezimalsystem

Beispiel: 17 - 14

Komplement:

17₁₀
- 14₁₀
3₁₀

Komplement im Dezimalsystem

Beispiel: 17 – 14 Komplement: 17₁₀ 10010 14₁₀

Komplement im Dezimalsystem

Beispiel: 17 – 14

Komplement:

100₁₀

- 14₁₀

Komplement im Dezimalsystem

Beispiel: 17 – 14

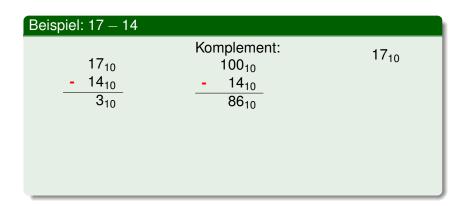
Komplement:

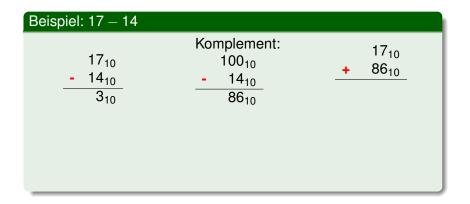
Komplement im Dezimalsystem

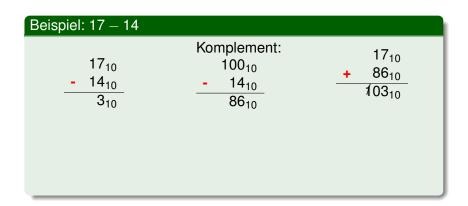
Beispiel: 17 – 14

Komplement:

Subtraktion







Komplement im Dezimalsystem

Beispiel: 17 – 14

Komplement: 100₁₀ - 14₁₀ 86₁₀

- Komplementbildung erfordert immer noch Subtraktion, im Binärsystem allerdings nicht (kommt gleich)
- Anderes Problem: Was passiert wenn Ergebnis negativ,
 d.h. b a bei a > b?

Subtraktion

Subtraktion

Komplement im Dezimalsystem

Beispiel: 45 – 81

45₁₀

Subtraktion

Komplement im Dezimalsystem

Beispiel: 45 – 81

4510

- 81₁₀

Subtraktion

Komplement im Dezimalsystem

Beispiel: 45 – 81

4510

- 81₁₀
- **-** 36₁₀

Komplement im Dezimalsystem

Beispiel: 45 – 81

Komplement:

- 4510
- **-** 81₁₀
- **-** 36₁₀

□ Subtraktion

Komplement im Dezimalsystem

Beispiel: 45 – 81

45₁₀

- 81₁₀
- **-** 36₁₀

Komplement:

100₁₀

Komplement im Dezimalsystem

Beispiel: 45 – 81

45₁₀

- 81₁₀

- 36₁₀

Komplement:

100₁₀

- 81₁₀

Komplement im Dezimalsystem

Beispiel: 45 – 81

45₁₀
- 81₁₀
- 36₁₀

Komplement:

100₁₀
- 81₁₀
19₁₀

Komplement im Dezimalsystem

Beispiel: 45 – 81

45₁₀
- 81₁₀
- 36₁₀

Komplement:

100₁₀
- 81₁₀
19₁₀

Komplement im Dezimalsystem

Beispiel: 45 – 81

45₁₀
- 81₁₀
- 36₁₀

Komplement:

100₁₀
- 81₁₀
19₁₀

45₁₀

Subtraktion

Komplement im Dezimalsystem

Beispiel: 45 – 81

45₁₀
- 81₁₀
- 36₁₀

Komplement:

100₁₀ - 81₁₀ 19₁₀ 45₁₀ + 19₁₀

Komplement im Dezimalsystem

Beispiel: 45 – 81

45₁₀
- 81₁₀
- 36₁₀

Komplement:

100₁₀ - 81₁₀ 19₁₀

Komplement im Dezimalsystem

Beispiel: 45 - 81

Komplement: 100₁₀ - 81₁₀ - 19₁₀

- ERGEBNIS IST FALSCH!
- Kein Übertrag aufgetreten, daher auch nicht streichbar
- Subtraktion fehlt! Zwischenergebnis rückkomplementieren!

$$45-81 = 45+(100-81)-100$$
 (4)

$$= 45 + 19 - 100 \tag{5}$$

$$= 64 - 100 = -36 \tag{6}$$

Komplement im Dezimalsystem

$$b - a = b + (100 - a) - 100 (7)$$

Komplement im Dezimalsystem

$$b - a = b + (100 - a) - 100 (7)$$

$$b-a = [b+(100-a)]-100$$
 (8)

Komplement im Dezimalsystem

$$b - a = b + (100 - a) - 100 \tag{7}$$

$$b-a = [b+(100-a)]-100$$
 (8)

$$b-a = c-100 (9)$$

Komplement im Dezimalsystem

Rückkomplementieren

$$b - a = b + (100 - a) - 100 \tag{7}$$

$$b-a = [b+(100-a)]-100$$
 (8)

$$b-a = c-100 (9)$$

$$b-a = -(100-c)$$
 (10)

c < 0;

Subtraktion

Komplement im Dezimalsystem

$$b - a = b + (100 - a) - 100 \tag{7}$$

$$b-a = [b+(100-a)]-100$$
 (8)

$$b-a = c-100 (9)$$

$$b - a = -(100 - c) (10)$$

- c < 0; -(100 c) =negatives Komplement von c!
- <u>Falls kein</u> Übertrag vorhanden: Rückkomplementieren
- ⇒ Ergebnis ist negativ
 - <u>Falls</u> Übertrag vorhanden, diesen streichen
- ⇒ Ergebnis ist positiv

Subtraktion

Komplement

Komplement im Binärsystem

- Wir bilden zuerst das Stellenkomplement
- Für jede Ziffer: Differenz zu größtmöglichem Wert (= 1)
- Ist die Ziffer 1, ist die Differenz 0
- Ist die Ziffer 0, ist die Differenz 1
- Entspricht Boole'scher (logischer) Operation NOT
- Für vollständiges (Zweier-)Komplement: +1

Im Dezimalsystem (zweistellige Zahl)

- (99 a): **Stellen**komplement, ziffernweise berechenbar!
- Für jede Ziffer: Differenz zu größtmöglichem Wert (= 9)
- Vollständiges Komplement durch Addition von 1

-Subtraktion

Subtraktion im Dualsystem

Beispiel: Zwei 8 Bit Dualzahlen subtrahieren

Subtraktion im Dualsystem

Beispiel: Zwei 8 Bit Dualzahlen subtrahieren

55₁₀ | 0 0 1 1 0 1 1 1₂

-Subtraktion

Subtraktion im Dualsystem

Beispiel: Zwei 8 Bit Dualzahlen subtrahieren

-Subtraktion

Subtraktion im Dualsystem

Beispiel: Zwei 8 Bit Dualzahlen subtrahieren

	55 ₁₀	0	0	1	1	0	1	1	12
-	26 ₁₀	0	0	0	1	1	0	1	02
	29 ₁₀	?	?	?	?	?	?	?	?2

VO 050041: Technische Grundlagen der Informatik

Arithmetische Operationen im Dualsystem

-Subtraktion

Subtraktion im Dualsystem

VO 050041: Technische Grundlagen der Informatik
Arithmetische Operationen im Dualsystem

Subtraktion

Subtraktion im Dualsystem

1.) Komplementbildung des Subtrahenden

NOT | 0 0 0 1 1 0 1 0₂

└-Subtraktion

Subtraktion im Dualsystem

-Subtraktion

Subtraktion im Dualsystem

NOT	0	0	0	1	1	0	1	02
=	1	1	1	0	0	1	0	12
+								12

-Subtraktion

Subtraktion im Dualsystem

NOT	0	0	0	1	1	0	1	02
=	1	1	1	0	0	1	0	12
+								12
	1	1	1	0	0	1	1	02

Subtraktion

Subtraktion im Dualsystem

1.) Komplementbildung des Subtrahenden

NOT	0	0	0	1	1	0	1	02
=	1							12
+								12
	1	1	1	0	0	1	1	02

2.) Addition

Übertrag vorhanden ⇒ Ergebnis positiv!

Subtraktion

Subtraktion im Dualsystem

1.) Komplementbildung des Subtrahenden

NOT	0	0	0	1	1	0	1	02
=	1	1	1	0	0	1	0	12
+								12
	1	1	1	0	0	1	1	02

2.) Addition

-Subtraktion

Subtraktion im Dualsystem

1.) Komplementbildung des Subtrahenden

NOT	0	0	0	1	1	0	1	02
=	1	1	1	0	0	1	0	12
+								12
	1	1	1	0	0	1	1	02

2.) Addition

Übertrag vorhanden ⇒ Ergebnis positiv!

Subtraktion

Subtraktion im Dualsystem

1.) Komplementbildung des Subtrahenden

NOT	0	0	0	1	1	0	1	02
=	1	1	1	0	0	1	0	12
+								12
	1	1	1	0	0	1	1	02

2.) Addition

Übertrag vorhanden ⇒ Ergebnis positiv!

VO 050041: Technische Grundlagen der Informatik

-Arithmetische Operationen im Dualsystem

-Subtraktion

Subtraktion im Dualsystem

Beispiel: Zwei 8 Bit Dualzahlen subtrahieren

VO 050041: Technische Grundlagen der Informatik

- Arithmetische Operationen im Dualsystem

 \sqsubseteq Subtraktion

Subtraktion im Dualsystem

Beispiel: Zwei 8 Bit Dualzahlen subtrahieren

26₁₀ 0 0 0 1 1 0 1 0

Subtraktion

Subtraktion im Dualsystem

Beispiel: Zwei 8 Bit Dualzahlen subtrahieren

Subtraktion

Subtraktion im Dualsystem

Beispiel: Zwei 8 Bit Dualzahlen subtrahieren

-Subtraktion

Subtraktion im Dualsystem

Beispiel: Zwei 8 Bit Dualzahlen subtrahieren

1.) Komplementbildung des Subtrahenden

NOT | 0 0 1 1 0 1 1 1₂

-Subtraktion

Subtraktion im Dualsystem

Beispiel: Zwei 8 Bit Dualzahlen subtrahieren

Subtraktion

Subtraktion im Dualsystem

Beispiel: Zwei 8 Bit Dualzahlen subtrahieren

NOT	0	0	1	1	0	1	1	12
=	1	1	0	0	1	0	0	02
+								12

Subtraktion

Subtraktion im Dualsystem

Beispiel: Zwei 8 Bit Dualzahlen subtrahieren

NOT	0	0	1	1	0	1	1	12
=	1							02
+								12
	1	1	0	0	1	0	0	12

VO 050041: Technische Grundlagen der Informatik

Arithmetische Operationen im Dualsystem

□ Subtraktion

Subtraktion im Dualsystem

2.) Addition

VO 050041: Technische Grundlagen der Informatik

Arithmetische Operationen im Dualsystem

Subtraktion

Subtraktion im Dualsystem

2.) Addition

| 0 0 0 1 1 0 1 0₂

 \sqsubseteq Subtraktion

Subtraktion im Dualsystem

2.) Addition 0 0 0 1 1 0 1 0₂ 1 1 0 0 1 0 0 1₂

Subtraktion

Subtraktion im Dualsystem

Subtraktion

Subtraktion im Dualsystem

2.) Addition

0	0	0	1	1	0	1	02
1	1	0	0	1	0	0	0 ₂
1	1	1	0	0	0	1	12

3.) Rückkomplementbildung

KEIN Übertrag ⇒ Ergebnis negativ!

Subtraktion

Subtraktion im Dualsystem

2.) Addition

0	0	0	1	1	0	1	02
1	1	0	0	1	0	0	0 ₂
1	1	1	0	0	0	1	12

3.) Rückkomplementbildung

KEIN Übertrag ⇒ Ergebnis negativ!

Zwischenergebnis: 1 1 1 0 0 0 1 1₂

└-Subtraktion

Subtraktion im Dualsystem

2.) Addition

0	0	0	1	1	0	1	02
1	1	0	0	1	0	0	0 ₂
1	1	1	0	0	0	1	12

3.) Rückkomplementbildung

KEIN Übertrag ⇒ Ergebnis negativ!

 Zwischenergebnis:
 1
 1
 1
 0
 0
 0
 1
 1₂

 Stellenkompl.:
 0
 0
 0
 1
 1
 1
 0
 0₂

Subtraktion

Subtraktion im Dualsystem

2.) Addition

0	0	0	1	1	0	1	02
1	1	0	0	1	0	0	0 ₂
1	1	1	0	0	0	1	12

3.) Rückkomplementbildung

KEIN Übertrag ⇒ Ergebnis negativ!

Zwischenergebnis:	1	1	1	0	0	0	1	12
Stellenkompl.:	0	0	0	1	1	1	0	02
+1	0	0	0	0	0	0	0	12

Subtraktion

Subtraktion im Dualsystem

2.) Addition

0	0	0	1	1	0	1	02
1	1	0	0	1	0	0	0 ₂
1	1	1	0	0	0	1	12

3.) Rückkomplementbildung

KEIN Übertrag ⇒ Ergebnis negativ!

Zwischenergebnis:	1	1	1	0	0	0	1	12
Stellenkompl.:	0	0	0	1	1	1	0	02
+1	0	0	0	0	0	0	0	12
=	0	0	0	1	1	1	0	12

• $11101_2 = 29_{10} \Rightarrow \text{Minus davorschreiben: } -29_{10}$

Einfache Multiplikation/Division

Verschiebeoperationen (Shifting)

Verschieben nach links (bei Big Endian)

Verschieben einer Zahl um S Stellen nach **links** entspricht **Multiplikation** mit B^S

$$x \cdot B^{S} = \left(\sum_{i=0}^{N-1} b_{i} \cdot B^{i}\right) \cdot B^{S} = \sum_{i=0}^{N-1} b_{i} \cdot B^{i} \cdot B^{S} = \sum_{i=0}^{N-1} b_{i} \cdot B^{i+S}$$

Einfache Multiplikation/Division

Verschiebeoperationen (Shifting)

Verschieben nach links (bei Big Endian)

Verschieben einer Zahl um S Stellen nach **links** entspricht **Multiplikation** mit B^S

$$x \cdot B^{S} = \left(\sum_{i=0}^{N-1} b_{i} \cdot B^{i}\right) \cdot B^{S} = \sum_{i=0}^{N-1} b_{i} \cdot B^{i} \cdot B^{S} = \sum_{i=0}^{N-1} b_{i} \cdot B^{i+S}$$

Beispiel: 01100111₂ = 8bit unsigned integer

Stelle 7 6 5 4 3 2 1 (

Einfache Multiplikation/Division

Verschiebeoperationen (Shifting)

Verschieben nach links (bei Big Endian)

Verschieben einer Zahl um S Stellen nach **links** entspricht **Multiplikation** mit B^S

$$x \cdot B^{S} = \left(\sum_{i=0}^{N-1} b_{i} \cdot B^{i}\right) \cdot B^{S} = \sum_{i=0}^{N-1} b_{i} \cdot B^{i} \cdot B^{S} = \sum_{i=0}^{N-1} b_{i} \cdot B^{i+S}$$

Beispiel: 01100111₂ = 8bit unsigned integer

Stelle	7	6	5	4	3	2	1	0
Vorher	0	1	1	n	n	1	1	1

Einfache Multiplikation/Division

Verschiebeoperationen (Shifting)

Verschieben nach links (bei Big Endian)

Verschieben einer Zahl um S Stellen nach **links** entspricht **Multiplikation** mit B^S

$$x \cdot B^{S} = \left(\sum_{i=0}^{N-1} b_{i} \cdot B^{i}\right) \cdot B^{S} = \sum_{i=0}^{N-1} b_{i} \cdot B^{i} \cdot B^{S} = \sum_{i=0}^{N-1} b_{i} \cdot B^{i+S}$$

Beispiel: 01100111₂ = 8bit unsigned integer

Stelle	7	6	5	4	3	2	1	0
Vorher	0	1	1	0	0	1	1	1
Nachher	1	1	0	0	1	1	1	0

Einfache Multiplikation/Division

Verschiebeoperationen (Shifting)

Verschieben nach links (bei Big Endian)

Verschieben einer Zahl um S Stellen nach **links** entspricht **Multiplikation** mit B^S

$$x \cdot B^{S} = \left(\sum_{i=0}^{N-1} b_{i} \cdot B^{i}\right) \cdot B^{S} = \sum_{i=0}^{N-1} b_{i} \cdot B^{i} \cdot B^{S} = \sum_{i=0}^{N-1} b_{i} \cdot B^{i+S}$$

Beispiel: 01100111₂ = 8bit unsigned integer

Stelle	7	6	5	4	3	2	1	0
Vorher	0	1	1	0	0	1	1	1
Nachher	1	1	0	0	1	1	1	0

Vorsicht vor Überläufen (Overflows)!

Einfache Multiplikation/Division

Verschiebeoperationen (Shifting)

Verschieben nach rechts (bei Big Endian)

Verschieben einer Zahl um S Stellen nach **rechts** entspricht **Division** durch B^S

$$x \cdot B^{-S} = \left(\sum_{i=0}^{N-1} b_i \cdot B^i\right) \cdot B^{-S} = \sum_{i=0}^{N-1} b_i \cdot B^i \cdot B^{-S} = \sum_{i=0}^{N-1} b_i \cdot B^{i-S}$$

Einfache Multiplikation/Division

Verschiebeoperationen (Shifting)

Verschieben nach rechts (bei Big Endian)

Verschieben einer Zahl um S Stellen nach **rechts** entspricht **Division** durch B^S

$$x \cdot B^{-S} = \left(\sum_{i=0}^{N-1} b_i \cdot B^i\right) \cdot B^{-S} = \sum_{i=0}^{N-1} b_i \cdot B^i \cdot B^{-S} = \sum_{i=0}^{N-1} b_i \cdot B^{i-S}$$

Beispiel: 1010₂ = 4bit unsigned integer

Einfache Multiplikation/Division

Verschiebeoperationen (Shifting)

Verschieben nach rechts (bei Big Endian)

Verschieben einer Zahl um S Stellen nach **rechts** entspricht **Division** durch B^S

$$x \cdot B^{-S} = \left(\sum_{i=0}^{N-1} b_i \cdot B^i\right) \cdot B^{-S} = \sum_{i=0}^{N-1} b_i \cdot B^i \cdot B^{-S} = \sum_{i=0}^{N-1} b_i \cdot B^{i-S}$$

Beispiel: $1010_2 = 4bit$ unsigned integer

Einfache Multiplikation/Division

Verschiebeoperationen (Shifting)

Verschieben nach rechts (bei Big Endian)

Verschieben einer Zahl um S Stellen nach **rechts** entspricht **Division** durch B^S

$$x \cdot B^{-S} = \left(\sum_{i=0}^{N-1} b_i \cdot B^i\right) \cdot B^{-S} = \sum_{i=0}^{N-1} b_i \cdot B^i \cdot B^{-S} = \sum_{i=0}^{N-1} b_i \cdot B^{i-S}$$

Beispiel: $1010_2 = 4bit$ unsigned integer

Stelle	3	2	1	0
Vorher	1	0	1	0
Nachher	0	1	0	1

Einfache Multiplikation/Division

Verschiebeoperationen (Shifting)

Verschieben nach rechts (bei Big Endian)

Verschieben einer Zahl um S Stellen nach **rechts** entspricht **Division** durch B^S

$$x \cdot B^{-S} = \left(\sum_{i=0}^{N-1} b_i \cdot B^i\right) \cdot B^{-S} = \sum_{i=0}^{N-1} b_i \cdot B^i \cdot B^{-S} = \sum_{i=0}^{N-1} b_i \cdot B^{i-S}$$

Beispiel: $1010_2 = 4bit$ unsigned integer

Stelle	3	2	1	0
Vorher	1	0	1	0
Nachher	0	1	0	1

Vorsicht vor Unterläufen (Underflows)!

Überblick

- 1 Zahlensysteme
- 2 Konvertierung zwischen Zahlensystemen
- 3 Arithmetische Operationen im Dualsystem
- Zahlendarstellungen am Computer Endianess Negative Binärzahlen
- 6 Numerik

Endianess

Big/Little Endian

(Byte)ordnung

Steht am Anfang einer Folge aus mehreren Teilen^a der höchstwertige Teil (Big-Endian) oder der niedrigstwertige Teil (Little-Endian)?

^aBits, Bytes, Words, ...

4660₁₀ im 16-Bit Format

• $4660_{10} \Rightarrow 1234_{16}$

Big-endian: 12 | 34

Adresse | Adresse+1

• Little-endian: 34 | 12

Adresse | Adresse+1

Zahlendarstellungen am Computer

Endianess

Big/Little Endian - Beispiele

Im Alltag

Datum: 16. Oktober 2014

L Endianess

Big/Little Endian - Beispiele

Im Alltag

Datum: 16. Oktober 2014

• Uhrzeit: 18 Uhr 45 Minuten 17 Sekunden

-Zahlendarstellungen am Computer

Endianess

Big/Little Endian - Beispiele

Im Alltag

- Datum: 16. Oktober 2014
- Uhrzeit: 18 Uhr 45 Minuten 17 Sekunden
- Adresse: Boltzmanngasse 3, 1090 Wien, Österreich, ...

-Zahlendarstellungen am Computer

Endianess

Big/Little Endian - Beispiele

Im Alltag

- Datum: 16. Oktober 2014
- Uhrzeit: 18 Uhr 45 Minuten 17 Sekunden
- Adresse: Boltzmanngasse 3, 1090 Wien, Österreich, ...

Endianess

Big/Little Endian - Beispiele

Dualsystem: Big Endian

$$10011_2 = 1 \cdot 2^4 + 0 \cdot 2^3 + 0 \cdot 2^2 + 1 \cdot 2^1 + 1 \cdot 2^0 = 19_{10}$$

Endianess

Big/Little Endian - Beispiele

Dualsystem: Big Endian

$$10011_2 = 1 \cdot 2^4 + 0 \cdot 2^3 + 0 \cdot 2^2 + 1 \cdot 2^1 + 1 \cdot 2^0 = 19_{10}$$

Dualsystem: Little Endian

$$10011_2 = 1 \cdot 2^0 + 0 \cdot 2^1 + 0 \cdot 2^2 + 1 \cdot 2^3 + 1 \cdot 2^4 = 25_{10}$$

- Zahlendarstellungen am Computer

Endianess

Big/Little Endian - Beispiele

Dualsystem: Big Endian

$$10011_2 = 1 \cdot 2^4 + 0 \cdot 2^3 + 0 \cdot 2^2 + 1 \cdot 2^1 + 1 \cdot 2^0 = 19_{10}$$

Dualsystem: Little Endian

$$10011_2 = 1 \cdot 2^0 + 0 \cdot 2^1 + 0 \cdot 2^2 + 1 \cdot 2^3 + 1 \cdot 2^4 = 25_{10}$$

Konvention

Zahlen: Bei Verwendung von Stellenwertsystemen durch Menschen ist Big Endian Konvention!

-Zahlendarstellungen am Computer

L Endianess

Bytereihenfolge

Szenario

- Es müssen mehr Daten transferiert oder gespeichert werden, als in der kleinsten addressierbaren Einheit unterzubringen sind.
- Bsp: 439041101₁₀ als 32 bit Integer
- Big Endian: 00011010 00101011 00111100 01001101

-Zahlendarstellungen am Computer

Endianess

Bytereihenfolge

Szenario

- Es müssen mehr Daten transferiert oder gespeichert werden, als in der kleinsten addressierbaren Einheit unterzubringen sind.
- Bsp: 439041101₁₀ als 32 bit Integer
- Big Endian: 00011010 00101011 00111100 01001101

	Big Endian			Little Endian		
Adresse	Hex	Dez	Binär	Hex	Dez	Binär
10000	1A	26	00011010	4D	77	01001101
10001	2B	43	00101011	3C	60	00111100
10002	3C	60	00111100	2B	43	00101011
10003	4D	77	01001101	1A	26	00011010

- Zahlendarstellungen am Computer

Endianess

Endianess

Relevanz

- Wurde v.a. bei beginnender Vernetzung extrem wichtig
- AMD & Intel: Little Endian
 - ⇒ niederwertigstes Byte hat niedrigste Adresse
 - ABER: Bit-Reihenfolge ist Big Endian!
- RISC (SPARC, MIPS, PPC, ARM, ...): Big Endian
 - ⇒ höchstwertiges Byte hat niedrigste Adresse
 - Bit- und Byte-Reihenfolge ident
- Auch exotische Zwischendinge möglich, Bi-Endian: Umschaltbar
 - · Byte order: big endian
 - · Bit order: little endian

-Zahlendarstellungen am Computer

Negative Binärzahlen

Negative Binärzahlen

Verschiedene Ansätze

- 1 Vorzeichen und Betrag: Vorzeichenbit, dann absolute Größe der Zahl
- 2 Einerkomplement: überholt
- 3 Zweierkomplement: Standard
- 4 Exzessdarstellung: Wertebereichsverschiebung

Zahlendarstellungen am Computer

Negative Binärzahlen

Vorzeichen und Betrag

Vorzeichen und Betrag

n	n – 1		0
VZ		Betrag	

- Führendes Bit codiert Vorzeichen: (0/1 ⇒ +/-)
- Grundsätzlich:

•
$$z = +0$$
 bis $+2^{n-1}-1 \Rightarrow 000...00$ bis $011...11$

•
$$z = -0$$
 bis $-(2^{n-1}-1) \Rightarrow 100...00$ bis $111...11$

- n-1: Aufteilung in positiven/negativen Bereich benötigt 1 Bit
- -1: Null wird als -0 und +0 kodiert

Negative Binärzahlen

Vorzeichen und Betrag

Vorzeichen und Betrag

n	n – 1		0
VZ		Betrag	

- Führendes Bit codiert Vorzeichen: (0/1 ⇒ +/-)
- Grundsätzlich:

•
$$z = +0$$
 bis $+2^{n-1}-1 \Rightarrow 000...00$ bis $011...11$

•
$$z = -0$$
 bis $-(2^{n-1}-1) \Rightarrow 100...00$ bis 111...11

- n-1: Aufteilung in positiven/negativen Bereich benötigt 1 Bit
- -1: Null wird als -0 und +0 kodiert

$$-(2^{n-1}-1) \leq z \leq 2^{n-1}-1$$

-Zahlendarstellungen am Computer

Negative Binärzahlen

Vorzeichen und Betrag

Beispiel

- Wortlänge 4 Bits, ⇒ 2⁴ = 16 Kombinationen
- Bei positiven Zahlen: 0 bis $2^4 1 = 15$ darstellbar
- Ausweitung auf negative Zahlen: Darstellungsbereich auf negative und positive Hälfte aufteilen
- Zahlen von −7 bis 7 darstellbar

Negative Binärzahlen

Vorzeichen und Betrag

Beispiel

- Wortlänge 4 Bits, ⇒ 2⁴ = 16 Kombinationen
- Bei positiven Zahlen: 0 bis $2^4 1 = 15$ darstellbar
- Ausweitung auf negative Zahlen: Darstellungsbereich auf negative und positive Hälfte aufteilen
- Zahlen von −7 bis 7 darstellbar

8-Bit-Prozessoren

$$x = 8 \Rightarrow -127 \le z \le 127$$

Zahlendarstellungen am Computer

Negative Binärzahlen

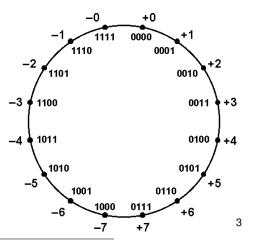
Vorzeichen und Betrag

 $^{^2 \}verb|http://www.iris.uni-stuttgart.de/lehre/eggenberger/\\ \verb|gdi/1/Codierung/Zahlendarstellung/VorzeichenBetrag.gif|$

-Zahlendarstellungen am Computer

Negative Binärzahlen

Stellenkomplement ("Einerkomplement")

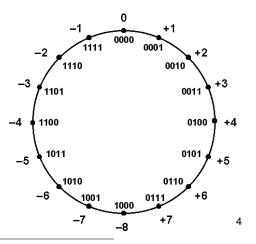


³http://www.iris.uni-stuttgart.de/lehre/eggenberger/ gdi/1/Codierung/Zahlendarstellung/B-1-Komplement.gif

- Zahlendarstellungen am Computer

Negative Binärzahlen

Zweierkomplement



⁴http://www.iris.uni-stuttgart.de/lehre/eggenberger/
gdi/1/Codierung/Zahlendarstellung/B-Komplement.gif

Zahlendarstellungen am Computer

Negative Binärzahlen

Exzessdarstellung

Exzessdarstellung

- Zur Zahl z wird eine Exzess q addiert, damit das Ergebnis w (= die Darstellung) nicht negativ ist.
- Exzess q muss daher gleich dem Betrag der kleinsten negativen Zahl gewählt werden

Exzessdarstellung

Beispiel:
$$n = 2^5 \Rightarrow q = 2^4 = 16$$

Exzessdarstellung

Beispiel:
$$n=2^5 \Rightarrow q=2^4=16$$

• $z = -2^4$ bis -1

 \Rightarrow 00000 bis 01111

Exzessdarstellung

Beispiel:
$$n = 2^5 \Rightarrow q = 2^4 = 16$$

• $z = -2^4$ bis -1 $\Rightarrow 00000$ bis 01111

• $z = 0 \Rightarrow 10000(=q)$

Exzessdarstellung

Beispiel:
$$n = 2^5 \Rightarrow q = 2^4 = 16$$

- $z = -2^4$ bis -1 $\Rightarrow 00000$ bis 01111
- $z = 0 \Rightarrow 10000(=q)$
- z = 1 bis $+(2^4 1)$ $\Rightarrow 10001$ bis 11111

Exzessdarstellung

Beispiel:
$$n=2^5 \Rightarrow q=2^4=16$$

- $z = -2^4$ bis -1 $\Rightarrow 00000$ bis 01111
- $z = 0 \Rightarrow 10000(=q)$
- z = 1 bis $+(2^4 1)$ \Rightarrow 10001 bis 11111
- Führendes Bit codiert Vorzeichen: 0/1 ⇒ -/+

Exzessdarstellung

Beispiel: $n=2^5 \Rightarrow q=2^4=16$

- $z = -2^4$ bis -1 $\Rightarrow 00000$ bis 01111
- $z = 0 \Rightarrow 10000(=q)$
- z = 1 bis $+(2^4 1)$ \Rightarrow 10001 bis 11111
- Führendes Bit codiert Vorzeichen: 0/1 ⇒ -/+
- Null hat nur eine Codierung!

Exzessdarstellung

Beispiel:
$$n = 2^5 \Rightarrow q = 2^4 = 16$$

- $z = -2^4$ bis -1 $\Rightarrow 00000$ bis 01111
- $z = 0 \Rightarrow 10000(=q)$
- z = 1 bis $+(2^4 1)$ \Rightarrow 10001 bis 11111
- Führendes Bit codiert Vorzeichen: 0/1 ⇒ -/+
- Null hat nur eine Codierung!
- Ordnungsrelation bleibt erhalten!

Exzessdarstellung

Beispiel:
$$n = 2^5 \Rightarrow q = 2^4 = 16$$

- $z = -2^4$ bis -1 $\Rightarrow 00000$ bis 01111
- $z = 0 \Rightarrow 10000(=q)$
- z = 1 bis $+(2^4 1)$ \Rightarrow 10001 bis 11111
- Führendes Bit codiert Vorzeichen: 0/1 ⇒ -/+
- Null hat nur eine Codierung!
- Ordnungsrelation bleibt erhalten!
- ⇒ Vergleiche zwischen Zahlen!

Überblick

- 2 Zahlensysteme
- 2 Konvertierung zwischen Zahlensystemen
- 3 Arithmetische Operationen im Dualsystem
- 4 Zahlendarstellungen am Computer
- 6 Numerik

Festpunkt-Darstellung Gleitpunkt-Darstellung Fehlerfortpflanzung

Numerische Berechnungen und Numerik

- Berechnungen unter Verwendung reeller Zahlen (oder deren Näherung!) nennt man numerische Berechnungen
- Die dazugehörige mathematische Disziplin: Numerik

Näherung

- Speicher und Rechenzeit begrenzt
- Nur signifikante Stellen speichern
- → Oft kann eine Zahl nicht exakt im Computer gespeichert werden, sondern nur eine N\u00e4herung (Approximation) davon
 - Beispiel: $0.1_{10} \approx 0.00011001100110011...$
- ⇒ Dadurch ergibt sich auch ein entsprechender Rundungsfehler

Dezimaltrennzeichen

Notation des Dezimaltrennzeichens: "," vs. "."

- Festkomma-Darstellung vs. Fixed-point arithmetic
- Gleitkomma-Darstellung vs. Floating-point arithmetic

Achtung auf die Notation

Auf den nächsten Folien wird ein Punkt (und kein Komma) als Dezimaltrennzeichen verwendet

Festpunkt-Darstellung

Festpunkt-(Festkomma)-Darstellung

Beispiel zweier Dezimalzahlen in Festkomma-Darstellung mit 12 Vorkomma und 22 Nachkommastellen

- 0000000000000.0000000000000000001602
- 149700000000.000000000000000000000

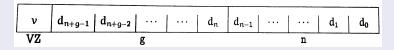
Festpunkt-Darstellung

Festpunkt-(Festkomma)-Darstellung

Beispiel zweier Dezimalzahlen in Festkomma-Darstellung mit 12 Vorkomma und 22 Nachkommastellen

- 0000000000000.0000000000000000001602

Mögliche Darstellung im Computer



Der Betrag einer N = n + g + 1 Bit breiten ganzen Zahl Z wird in g Vorkomma- und n Nachkommastellen unterteilt

Festpunkt-Darstellung

Festpunkt-(Festkomma)-Darstellung

Mögliche Darstellung im Computer

$$vd_{N-2}d_{N-3}\cdots d_1d_0=(-1)^{\nu}\cdot 2^{-n}\sum_{j=0}^{N-2}d_j\cdot 2^j=(-1)^{\nu}\cdot d_{N-2}\cdots d_1d_0$$

Festpunkt-Darstellung

Festpunkt-(Festkomma)-Darstellung

Mögliche Darstellung im Computer

$$vd_{N-2}d_{N-3}\cdots d_1d_0=(-1)^{\nu}\cdot 2^{-n}\sum_{j=0}^{N-2}d_j\cdot 2^j=(-1)^{\nu}\cdot d_{N-2}\cdots d_1d_0$$

Beispiel: N = 16 Bit breite und n = 3 Nachkommastellen

$$vd_{14}d_{13}\cdots d_1d_0=(-1)^{\nu}\cdot 2^{-3}\sum_{j=0}^{14}d_j\cdot 2^j$$

 $1000\,0000\,0000\,1011 = -(1.011)_2 = (-1)^1 \cdot 2^{-3} \cdot (2^3 + 2^1 + 1^0)$

- Numerik

Festpunkt-Darstellung

Festpunkt-(Festkomma)-Darstellung

Bsp: Kleinste und größte darstellbare Zahl mit N = 16, n = 3

- 1111 1111 1111 1111 = -4095.875_{10}
- Zwei aufeinanderfolgende Zahlen unterscheiden sich jeweils um den Betrag 0000 0000 0000 0001 = 0.125₁₀
- Damit überdeckt dieses Festpunkt-System auf der reellen Zahlengeraden das Intervall $[-4095.875_{10}, +4095.875_{10}]$ **gleichmäßig** mit konstantem Abstand $2^{-n} = 0.125_{10}$



- Numerik

Festpunkt-Darstellung

Festpunkt-(Festkomma)-Darstellung

Probleme der Festpunkt-Darstellung

- Intervall zwischen größter und kleinster darstellbarer Zahl sehr klein
- Größere Zahlen sind nur über eine Reduktion der Nachkommastellen darstellbar
- Verlust an Genauigkeit ist für große Zahlen oft vernachlässigbar, da die Bedeutung der Nachkommastellen mit steigenden Absolutbeträgen sinkt
- ⇒ Die Verwendung von sehr kleinen von Null verschiedenen Zahlen ist jedoch sehr wichtig, z.B. für wissenschaftliche Anwendungen
 - Festpunkt-Darstellung kann nicht beiden Forderungen (Darstellung sehr großer UND sehr kleiner Zahlen) genügen

-Gleitpunkt-Darstellung

Gleitpunkt-(Gleitkomma/Fließkomma)-Darstellung

Fließkommadarstellung

$$X = (-1)^{V} \cdot M \cdot B^{\pm E}$$

- V... Vorzeichen (V=1: negative Zahl, V=0: positive Zahl)
- M... Mantisse: Für Genauigkeit entscheidend
- B... Basis
- E... Exponent: Für Bereich entscheidend

- Gleitpunkt-Darstellung

Gleitpunkt-(Gleitkomma/Fließkomma)-Darstellung

Fließkommadarstellung

$$X = (-1)^{V} \cdot M \cdot B^{\pm E}$$

- V... Vorzeichen (V=1: negative Zahl, V=0: positive Zahl)
- M... Mantisse: Für Genauigkeit entscheidend
- B... Basis
- E... Exponent: Für Bereich entscheidend

Englische Bezeichnung

"Floating-point" (Dezimalpunkt statt Komma)

_ Numerik

-Gleitpunkt-Darstellung

Normalisierte Gleitpunkt-Darstellung

Beispiele

- $-0.0000123_{10} = -123 \cdot 10^{-7} = -12.3 \cdot 10^{-6}$
- $2016_{10} = 20.16 \cdot 10^2 = 0.2016 \cdot 10^4$
- ...

Mehrdeutigkeiten möglich

- Mögliche Normalisierung um Mehrdeutigkeiten zu vermeiden:
- ⇒ Mantisse hat genau eine Vorkommastelle, die ungleich 0 ist
 - $-1.23 \cdot 10^5$
 - $2.016 \cdot 10^3$

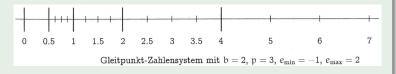
_ Numerik

Gleitpunkt-Darstellung

Normalisierte Gleitpunkt-Darstellung

Bsp: Gleitpunkt-Zahlensystem mit $B=2, E_{min}=-1, E_{max}=2$ und einer Mantissenlänge von p=3

Achtung: hier fehlen die negativen Zahlen!



Lange vertikale Markierungen entsprechen Mantisse von 1.00

$$\Rightarrow \ +1.00 \cdot 2^{-1} = 0.5_{10} \qquad +1.00 \cdot 2^{0} = 1_{10} \qquad +1.00 \cdot 2^{1} = 2_{10} \cdots$$

• Bsp.:
$$+1.01 \cdot 2^{-1} = 0.101_2 = 0.5_{10} + 0.125_{10} = +0.625_{10}$$

• Bsp.: $+1.11 \cdot 2^1 = 11.1_2 = 2_{10} + 1_{10} + 0.5_{10} = +3.5_{10}$

Gleitpunkt-Darstellung

Numerik

Denormalisierte Gleitpunkt-Darstellung

Problem im vorherigen Beispiel: Lücke zwischen 0 und kleinsten positiven darstellbaren Zahl 0.5₁₀

- Grund: Normalisierungsbedingung ($m_0 ! = 0$)
- U.a. gilt nun die Eigenschaft x = y ⇔ x y = 0 NICHT mehr
- \Rightarrow Bsp.: y = 1.11 · 2⁻¹ = 0.875₁₀; x = 1.00 · 2⁰ = 1.00₁₀
- \Rightarrow x y = 0.01 \cdot 2⁻¹ = 0.125₁₀ kann nicht als normalisierte Gleitpunktzahl dargestellt werden
- ⇒ Nächstliegende Zahl wäre Null. Durch eine Rundung auf Null kann ein folgenschwerer Laufzeit-Fehler passieren
- \Rightarrow Beispiel: if (x!=y) then z = 1/(x/y);

- Gleitpunkt-Darstellung

Denormalisierte Gleitpunkt-Darstellung

Um Eigenschaft $x = y \Leftrightarrow x - y = 0$ zu garantieren, ...

- ...erweitert man die normalisierten Zahlen um genau jene Zahlen, die betragsmäßig zu klein sind, um normalisiert dargestellt werden zu können
- Diese durch Normalisierungsbedingung ($m_0 ! = 0$) weggefallenen Zahlen, werden zurückgewonnen in dem man $m_0 = 0$ für $E = E_{min}$ zulässt
- ⇒ Diese Zahlen nennt man denormalisierte Zahlen
- \Rightarrow Sie liegen sämtlich im Bereich $[-B^{E_{min}}, +B^{E_{min}}]$

Gleitpunkt-Zahlensystem inklusive denormalisierter Gleitpunktzahlen

Maschinengenauigkeit

Maß für den Rundungsfehler, der bei der Rechnung mit Gleitkommazahlen auftritt

- Bsp.: Zwei aufeinanderfolgende binäre Gleitkommazahlen sind
- x = 1.000...00
- y = 1.000...01
- Die Differenz beschreibt die relative Genauigkeit des Zahlensystems
- ⇒ "Maschinengenauigkeit" bzw. "Maschinen-Epsilon"
 - $\epsilon = 2^{-p}$

- Gleitpunkt-Darstellung

IEEE 754 Standard (aktuell: 2008)

Verschiedene Formate definiert - die wichtigsten:

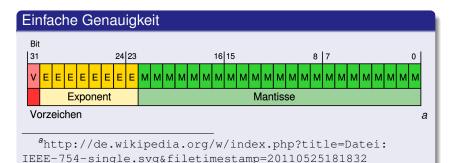
- 1 Einfache Genauigkeit: 32 Bits ("Single-precision")
- 2 Doppelte Genauigkeit: 64 Bits ("Double-precision")

- Gleitpunkt-Darstellung

IEEE 754 Standard (aktuell: 2008)

Verschiedene Formate definiert - die wichtigsten:

- 1 Einfache Genauigkeit: 32 Bits ("Single-precision")
- 2 Doppelte Genauigkeit: 64 Bits ("Double-precision")



-Numerik └-Gleitpunkt-Darstellung

Genauigkeit ⇒ nur endliche Genauigkeit möglich

Single-Precision: 32 bit

- VZ: 1 bit, Exponent: 8 bit, Mantisse: 23 Bit
- \Rightarrow Maschinenepsilon $\epsilon = 2^{-23} \Rightarrow$ dezimal $\approx 1.2 \cdot 10^{-7}$
- \Rightarrow Anzahl Dezimalstellen: ≈ 7

- Gleitpunkt-Darstellung

Genauigkeit ⇒ nur endliche Genauigkeit möglich

Single-Precision: 32 bit

- VZ: 1 bit, Exponent: 8 bit, Mantisse: 23 Bit
- \Rightarrow Maschinenepsilon $\epsilon = 2^{-23} \Rightarrow$ dezimal $\approx 1.2 \cdot 10^{-7}$
- \Rightarrow Anzahl Dezimalstellen: ≈ 7

Double-Precision: 64 bit

- VZ: 1 bit, Exponent: 11 bit, Mantisse: 52 Bit
- \Rightarrow Maschinenepsilon $\epsilon = 2^{-52} \Rightarrow$ dezimal $\approx 2.2 \cdot 10^{-16}$
- ⇒ Anzahl Dezimalstellen: ≈ 16

Gleitpunkt-Darstellung

Darstellung und Codierung im IEEE 754 Standard

Exponent in Exzessdarstellung

- Biased exponent e, e = E + q ($\Rightarrow E = e q$)
- E... rechnerisch wirkende Exponent, q... Exzess/bias
- \Rightarrow q = 127 bei 32 Bit (single-precision)
- ⇒ q = 1023 bei 64 Bit (double-precision)

-Gleitpunkt-Darstellung

Darstellung und Codierung im IEEE 754 Standard

Exponent in Exzessdarstellung

- Biased exponent e, e = E + q ($\Rightarrow E = e q$)
- E... rechnerisch wirkende Exponent, q... Exzess/bias
- ⇒ q = 127 bei 32 Bit (single-precision)
- \Rightarrow q = 1023 bei 64 Bit (double-precision)

Spezielle Codierung für

- Null
- Unendlich
- Ungültige Zahl (NaN, not a number)

Gleitpunkt-Darstellung

Beispiel: -5.375₁₀ in Single Precision

Umwandlung in Dualsystem

 $\bullet \ \ -5.375_{10} = -101.011_2$

- Gleitpunkt-Darstellung

Beispiel: -5.375₁₀ in Single Precision

Umwandlung in Dualsystem

• $-5.375_{10} = -101.011_2$

Normierung der Mantisse \pm 1. · · · · 2^E

- \bullet -1.01011₂ · 2²
- Nur Bitfolge nach dem Komma wird gespeichert: 01011
- Restlichen Stellen werden mit 0-ern aufgefüllt

- Gleitpunkt-Darstellung

Beispiel: -5.375₁₀ in Single Precision

Umwandlung in Dualsystem

• $-5.375_{10} = -101.011_2$

Normierung der Mantisse \pm 1. · · · · · 2^E

- \bullet -1.01011₂ · 2²
- Nur Bitfolge nach dem Komma wird gespeichert: 01011
- Restlichen Stellen werden mit 0-ern aufgefüllt

Exponent in Exzessdarstellung

- $e = E + q \Rightarrow 129 = 2 + 127$
- e = 10000001

Gleitpunkt-Darstellung

Beispiel: -5.375_{10} in Single Precision

Ergebnis

- $-5.375_{10} = -101.011_2 = -1.01011_2 \cdot 2^{2(entspricht\ E)} = -1.01011_2 \cdot 2^{(129-127)(entspricht\ e-q)}$
- Vorzeichenbit = 1
- Exponent e = 10000001

- Numerik

- Fehlerfortpflanzung

Rundungsfehleranalyse

Wie pflanzen sich Rundungsfehler fort?

- Typisches Beispiel Taschenrechner:
 Ziehe k-mal die Wurzel aus 2 und quadriere anschließend das Ergebnis k-mal
- Erwartetes Ergebnis: 2
- Erzieltes Ergebnis für große k: 1

Rundungsfehleranalyse

Wie pflanzen sich Rundungsfehler fort?

- Typisches Beispiel Taschenrechner:
 Ziehe k-mal die Wurzel aus 2 und quadriere anschließend das Ergebnis k-mal
- Erwartetes Ergebnis: 2
- Erzieltes Ergebnis für große k: 1

Addition dreier Maschinenzahlen

- Aufgabe: addiere x = a + b + c
- Maschinengenauigkeit ϵ
- Zerlegung der Gesamtrechnung:
 e = (a+_M b) und f = (e+_M c)

Rundungsfehleranalyse

$$f = e +_{M} c$$

$$= (e + c)(1 + \epsilon_{2})$$

$$= ((a +_{M} b) + c)(1 + \epsilon_{2})$$

$$= ((a + b)(1 + \epsilon_{1}) + c)(1 + \epsilon_{2})$$

$$= a + b + c + (a + b)\epsilon_{1} + (a + b + c)\epsilon_{2} + (a + b)\epsilon_{1}\epsilon_{2}$$

Rundungsfehleranalyse

$$f = e +_{M} c$$

$$= (e + c)(1 + \epsilon_{2})$$

$$= ((a +_{M} b) + c)(1 + \epsilon_{2})$$

$$= ((a + b)(1 + \epsilon_{1}) + c)(1 + \epsilon_{2})$$

$$= a + b + c + (a + b)\epsilon_{1} + (a + b + c)\epsilon_{2} + (a + b)\epsilon_{1}\epsilon_{2}$$

Erste Näherung

In erster Näherung (d.h. unter Vernachlässigung des quadratischen Terms $(a+b)\epsilon_1\epsilon_2$) ergibt sich also:

$$f = a + b + c + (a+b)\epsilon_1 + (a+b+c)\epsilon_2$$

$$\mathsf{mit}\ |\epsilon_1|, |\epsilon_2| \le \epsilon$$

Für den relativen Fehler in erster Näherung ergibt sich damit

$$f_{rel}(x) = \frac{x - f}{x} = \frac{(a + b + c) - (a + b + c + (a + b)\epsilon_1 + (a + b + c)\epsilon_2)}{a + b + c}$$

und daraus

$$=-\frac{a+b}{a+b+c}\epsilon_1-\epsilon_2$$

und wegen $|\epsilon_1|, |\epsilon_2| \leq \epsilon$ die Abschätzung

$$|f_{rel}(x)| \doteq \left| \frac{a+b}{a+b+c} \epsilon_1 + \epsilon_2 \right| \leq \left(1 + \left| \frac{a+b}{a+b+c} \right| \right) \epsilon$$

- Numerik

Fehlerfortpflanzung

Addition von Maschinenzahlen

1. Beobachtungen für den relativen Fehler

Der relative Fehler wird groß wenn:

- |a+b| >> |a+b+c|, oder
- $a+b+c\approx 0$

1. Beobachtungen für den relativen Fehler

Der relative Fehler wird groß wenn:

- |a+b| >> |a+b+c|, oder
- $a+b+c\approx 0$

2. Beobachtungen für den relativen Fehler

Andere Berechnungsreihenfolge liefert andere Faktoren:

•
$$x = (b+c) + a \rightarrow |f_{rel}| \leq \left(1 + \left|\frac{b+c}{a+b+c}\right|\right) \epsilon$$

•
$$x = (a+c) + b \rightarrow |f_{rel}| \leq \left(1 + \left|\frac{a+c}{a+b+c}\right|\right) \epsilon$$

⇒ Es wird also jeweils der bei der ersten Addition auftretende Fehler verstärkt!

- Numerik

Fehlerfortpflanzung

Addition von Maschinenzahlen

Beispiel: $a = 1.11_2 \cdot 2^{-1}$, $b = -1.10_2 \cdot 2^{-1}$, $c = 1.10_2 \cdot 2^{-3}$

Addition dieser Maschinenzahlen (dreistellige Mantisse inkl.

führender 1) in der Reihenfolge:
$$(a+b)+c$$

 $x = (1.11_2 \cdot 2^{-1} +_M (-1.10)_2 \cdot 2^{-1}) +_M 1.10_2 \cdot 2^{-3}$
 $= 1.00_2 \cdot 2^{-3} +_M 1.10_2 \cdot 2^{-3}$
 $= 1.01_2 \cdot 2^{-2}$ (korrektes Ergebnis)

• Andere Reihenfolge: x = a + (b + c)

mit relativem Fehler $\left| \frac{1.01_2 \cdot 2^{-2} - 1.10_2 \cdot 2^{-2}}{1.01_2 \cdot 2^{-2}} \right| = 20\%$

⇒ Also: Reihenfolge ist wichtig!!

(*) Hinweis für alle Interessierten: In diesem Bsp. kann man davon ausgehen, dass im Rechenwerk für die Mantisse mehr als 3 Bit zur Verfügung stehen ("Guard Bit, Round Bit, Sticky Bit"). Das erlaubt eine genaue Berechnung der Differenz, danach wird nach der dritten sionifikanten Ziffer aboeschnitten.

Besonders kritisch: Endergebnis nahe bei Null ("Auslöschung")

- Beispiel: Differenz zwischen a = 3/5 und b = 4/7 bei fünfstelliger Mantisse (hier 5 Stellen inkl. führender 1)
- Exaktes Ergebnis: $a b = 1/35 \approx 0.11101_2 \cdot 2^{-5}$
- Rundung: $a = (1.0011001...)_2 \cdot 2^{-1} \approx 1.0011_2 \cdot 2^{-1}$ und $b = (1.001001...)_2 \cdot 2^{-1} \approx 1.0010_2 \cdot 2^{-1}$
- Also ergibt Rechnung: $1.0011_2 \cdot 2^{-1} 1.0010_2 \cdot 2^{-1} = 0.0001_2 \cdot 2^{-1} = 1.0000_2 \cdot 2^{-5} = 1/32$
- Relativer Fehler: $\left|\frac{x-f}{x}\right| = \left|\frac{1}{35} \frac{1}{32}\right|$
- Vergleich: die Maschinengenauigkeit bei fünfstelliger Mantisse (inkl. führender 1) liegt bei ca. 3.1%

Gerundete Eingangszahlen

Differenz y = a - b für Eingangszahlen mit Rundungsfehlern

- $a \rightarrow a(1 + \epsilon_a), b \rightarrow b(1 + \epsilon_b)$, Maschinengenauigkeit ϵ
- Relativer Fehler bei gerundeten Eingangszahlen:

$$f_{rel}(y) = \frac{x - f}{x} = \frac{a - b - (a(1 + \epsilon_a) - b(1 + \epsilon_b)) \cdot \epsilon}{a - b}$$
$$= -\frac{a}{a - b} \cdot \epsilon_a + \frac{b}{a - b} \cdot \epsilon_b - \epsilon$$

- Eingabefehler werden also extrem verstärkt, falls sich a und b fast auslöschen!
- Das gilt aber nur für Eingangswerte mit Rundungsfehlern:
 Differenz mit exakten Zahlen ist ok!

- Fehlerfortpflanzung

-Numerik

Addition von Maschinenzahlen

Beispiel: Patriot-Scud Bug

- (Tragisches) Beispiel: sog. Patriot-Scud Software-Bug
- 25. Februar 1991 (Golf-Krieg): amerikanisches
 Raketenabwehrsystem Patriot verpasst Entdeckung einer irakischen Scud-Rakete, was zum Tod von mindestens 28

 Menschen führt
- Grund: unpräzise Zeitkalkulation aufgrund von arithmetischen Rundungsfehlern

- Fehlerfortpflanzung

Addition von Maschinenzahlen

Beispiel: Patriot-Scud Bug

- · Was war passiert?
- Interne Systemzeit misst in Zehntelsekunden. Diese Zeit wurde jeweils mit 10 malgenommen (Sekunden), und zwar über ein 24-Bit Festkommazahlenregister.
- Problem: 1/10 lässt sich im Binärsystem darin nicht exakt darstellen: Rundungsfehler nach der 24. Nachkommastelle.
- Patriot-System lief bereits über 100 Stunden, d.h. dieser kleine Rundungsfehler entsprach bereits einer Zeitdifferenz von ca. 0.34 Sekunden. In dieser Zeit fliegt eine Scud-Rakete ca. einen halben Kilometer.

- Fehlerfortpflanzung

Addition von Maschinenzahlen

Beispiel: Patriot-Scud Bug

- Weiteres Problem: Bugfix war eigentlich bereits eingebaut, aber nicht überall konsistent
- Konsequenz: keine gegenseitige Auslöschung der Rundungsfehler
- Ergebnis: das Patriot-System vermutete die Scud-Rakete an einer falschen Stelle und konnte sie daher nicht entdecken.