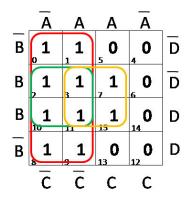
Repetitorium aus TGI im WS 2016/17

Einheit 4: Montag, 07.11.2016

Tutorium: Freitag, 04.11.2016 von 13:15-14:45 im SR 7

1. Normalformen und KV Diagramm

- (a) Erstellen Sie mittels KV Diagramm die minimale DNF für Ausdruck aus Beispiel 4g) des letzten Aufgabenblattes (vergleichen Sie die Lösung mit Bsp 4g).
- (b) Veranschaulichen Sie den Beweis aus Bsp. 5a) (Beweis De Morgan'sche Regel) des letzten Aufgabenblattes mittels KV Diagramm

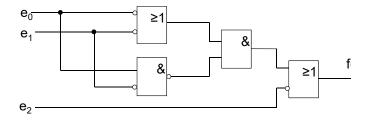

2. Wahrheitstabelle und KV Diagramm

(a) Erstellen Sie für folgende Wahrheitstabelle ein KV Diagramm, lesen Sie die minimale DNF ab, und zeichnen Sie die Schaltung des minimalen Terms

e_2	e_1	e_0	$f(e_2, e_1, e_0)$
0	0	0	1
0	0	1	1
0	1	0	1
0	1	1	1
1	0	0	0
1	0	1	0
1	1	0	1
1	1	1	1

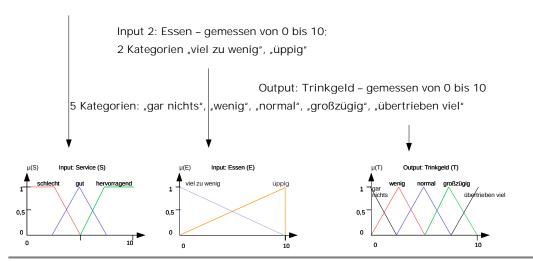
(b) Reverse engineering: Wie muss die entsprechende Wahrheitstabelle bzw. die entsprechende vollständige DNF aussehen, um folgendes KV Diagramm (nächste Seite) zu erhalten?

Grafik entnommen von: http://www.ne555.at



- (c) Erstellen Sie die minimale DNF für das KV Diagramm aus Bsp. (b)
- 3. Schaltung 1: Für folgenden Ausdruck soll eine Schaltung erstellt werden, wobei nur NOT/AND/OR/NAND/NOR Gatter verwendet werden dürfen.

Formen Sie zuerst den Term so um, dass weder Äquivalenz bzw. Implikation vorkommen, und zeichnen Sie danach die Schaltung.


$$f(a,b,c) = ((a \land b) \Rightarrow \neg c) \lor (a \Leftrightarrow c)$$

4. Schaltung 2: Reduzieren Sie die Anzahl der Schaltelemente (d.h. lesen Sie zuerst den Ausdruck der Schaltung ab, vereinfachen Sie diesen Ausdruck und zeichnen Sie die vereinfachte Schaltung).

5. Fuzzy Logic

Input 1: Service – gemessen von 0 bis 10; 3 Kategorien "schlecht", "gut", "hervorragend"

Drei Regeln:

R1: IF S=schlecht AND E=viel zu wenig THEN T=wenig

R2: IF S=qut THEN T=normal

R3: IF S=hervorragend OR E=üppig THEN T=großzügig

Aufgabenstellung: "Berechnen Sie für jede der drei Regeln mittels MAX-MIN-Inferenz für die konkreten Werte Service (S) = 3 und Essen (E) = 8

- 1) die einzelnen Ausgangs-Fuzzy-Mengen für diese konkreten Werte
- 2) die *resultierende* Ausgangs-Fuzzy-Menge für das Trinkgeld (T) (i.e., Vereinigung aller einzelnen Ausgangs-Fuzzy-Mengen
- 3) den scharfen Wert für das Trinkgeld (T) mittels Mean-of-Maximum bzw. alternativ: Center-of-Gravity (Hinweis: falls Sie an der exakten Rechnung scheitern, geben Sie eine Schätzung samt guter Begründung ab).