Universität Wien

Fakultät für Informatik

Prof. Wilfried Gansterer, Prof. Claudia Plant

Mathematische Grundlagen der Informatik 1

WiSe 2016/17

Übungsblatt 6: Matrizen und Lineare Algebra II und Graphentheorie I

Matrizen und Lineare Algebra II

Aufgabe 6-1

Eine Matrix M hat $Gau\beta$ –Jordan-Form (auch bekannt als reduzierte Stufenform oder normierte Zeilenstufenform), wenn in der Zeilenstufenform alle Leitkoeffizienten gleich 1 sind und sowohl über als auch unter den Leitkoeffizienten überall eine 0 steht (siehe auch Seite 206 in Hartmann). Zum Beispiel haben die ersten zwei folgenden Matrizen keine Gauß–Jordan-Form, die dritte hingegen schon:

$$\begin{pmatrix} 1 & 0 & 0 & 6 \\ 1 & 0 & 0 & 3 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 8 \end{pmatrix}, \begin{pmatrix} 1 & 0 & 0 & 6 \\ 0 & 1 & 0 & 3 \\ 0 & 0 & 4 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix}, \begin{pmatrix} 1 & 0 & 0 & 6 \\ 0 & 1 & 0 & 3 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix}.$$

Gegeben ist folgende 4×4 -Matrix:

$$A = \begin{pmatrix} 2 & 4 & 8 & 16 \\ 1 & 2 & 0 & 3 \\ -1 & 1 & 2 & 1 \\ 4 & 5 & 6 & 18 \end{pmatrix}.$$

Berechnen Sie mit dem Gaußschen Algorithmus die Gauß-Jordan-Form von A. Geben Sie dabei nach jedem Schritt des Gauß-Algorithmus das Zwischenergebnis an. Welchen Rang hat A?

Aufgabe 6-2

Gegeben ist folgende 4×4 -Matrix:

$$B = \begin{pmatrix} 2 & 4 & 8 & 16 \\ 1 & 2 & 0 & 3 \\ -1 & 1 & 2 & 1 \\ 1 & 1 & 1 & 1 \end{pmatrix}.$$

Berechnen Sie mit dem Gaußschen Algorithmus die Determinante von B. Geben Sie dabei nach jedem Schritt des Gauß-Algorithmus das Zwischenergebnis an.

Welchen Rang hat B? Wenn A wieder die Matrix aus Aufgabe 6-1 ist, hat die Matrix $A \times B$ vollen Rang?

Aufgabe 6-3

Gegeben sei folgende Matrix:

$$C = \begin{pmatrix} 3 & 2 & 0 \\ 1 & 0 & 0 \\ 2 & 0 & 1909 \end{pmatrix}.$$

Berechnen Sie die Eigenwerte von C, indem Sie die Determinante von $C-\lambda E$ nach der dritten Spalte entwickeln.

Hinweis: Die beiden Lösungen x_1 und x_2 für eine Gleichung $x^2 + px + q = 0$ erhalten Sie mit Hilfe der Mitternachtsformel: $x_{1,2} = -\frac{p}{2} \pm \sqrt{\frac{p^2}{4} - q}$.

Aufgabe 6-4

Gegeben ist folgende Matrix:

$$D = \begin{pmatrix} 2 & 4 & 6 & 12 \\ 0 & 0 & 4 & 8 \\ 2 & 2 & 2 & 2 \\ -2 & -4 & 0 & 0 \end{pmatrix}.$$

D hat die Eigenwerte 0, 2, $1+i\sqrt{35}$ und $1-i\sqrt{35}$. Berechnen Sie mit Hilfe des Gauß-Algorithmus die Eigenvektoren zu den Eigenwerten 0 und 2.

Aufgabe 6-5

Es sei $A \in \mathbb{R}^{n \times n}$ eine $n \times n$ -Matrix. Wir definieren *Matrixpotenzen* wie folgt: $A^1 = A$, $A^2 = A \times A$, wobei \times die übliche Matrixmultiplikation bezeichnet, und für k > 2, setzen wir $A^k = A \times A^{k-1}$.

Lösen Sie folgende Aufgaben:

- (a) Sei λ ein Eigenwert von A. Zeigen Sie mittels Induktion, dass λ^k ein Eigenwert von A^k ist.
- (b) Es seien $\{\lambda_1, \ldots, \lambda_i\}$ die Eigenwerte von A zu den Eigenvektoren $\{v_1, \ldots, v_i\}$. Welche Eigenwerte und Eigenvektoren hat A^k ?
- (c) Nehmen Sie an, dass alle Eigenwerte von A reell-wertig sind. Welche Eigenschaften haben die Eigenwerte von A^{2k} für $k \in \mathbb{N}$? Sind diese Eigenschaften auch gegeben, wenn A komplexe Eigenwerte hat?

Graphentheorie I

Aufgabe 6-6

Sei $V = \{a, b, c, d, e, f, g, h\}$ eine 8-elementige Menge. Wir betrachten den ungerichteten Graph G = (V, E), wobei

$$E = \{\{a,b\}, \{a,d\}, \{a,e\}, \{b,d\}, \{c,h\}, \{d,e\}, \{d,f\}, \{g,h\}\}.$$

- (a) Stellen Sie für den Graph G die Adjazenzmatrix auf.
- (b) Welche Zusammenhangskomponenten hat G?
- (c) Zeichnen Sie eine graphische Darstellung von G.

Aufgabe 6-7

Sei G = (V, E) ein Graph mit n Knoten. Wir zählen die Knoten beliebig auf: $V = \{v_1, \dots, v_n\}$. Dann ist $(d(v_1), d(v_2), \dots, d(v_n))$ eine *Gradfolge* von G, wobei $d(v_i)$ der Grad von v_i bezeichnet.

(a) Entscheiden Sie für folgende Folgen, ob es jeweils einen Graphen mit entsprechender Gradfolge gibt:

i)
$$(2,1,0)$$
. ii) $(3,3,3,3,2,2)$. iii) $(3,3,3,2,2,2)$.

(b) Beweisen oder widerlegen Sie die folgende Behauptung:

Zwei Graphen, die die gleiche Gradfolge haben, sind isomorph.

Aufgabe 6-8

Sei G = (V, E) ein Graph mit mindestens 3 Knoten. Eine Kante (u, v) heißt *Schlinge*, wenn u = v ist. Nehmen wir an, dass G keine Schlingen enthält.

Zeigen Sie, dass es mindestens zwei Knoten in G gibt, welche den gleichen Grad besitzen.

Aufgabe 6-9

Ein $\mathit{Wurzelbaum}$ ist ein Tupel (T,v), wobei T=(V,E) ein Baum ist und $v\in V$ ein Knoten, den man als Wurzel des Baumes bezeichnet. Ein Knoten $u\in V$ mit d(u)=1 heißt Blatt .

- (a) Es gibt keinen Baum ohne Blätter! Wahr oder falsch?
- (b) Eine Brücke in einem zusammenhängenden Graphen G=(V,E) ist eine Kante $e\in E$, so dass $G'=(V,E\setminus\{e\})$ nicht mehr zusammenhängend ist. Zeigen Sie, dass ein Graph, in dem all Knoten einen geraden Grad haben, keine Brücke enthählt.

Aufgabe 6-10

Sei T=(V,E) ein Wurzelbaum und $v\in V$ ein Knoten. Die Höhe von v ist die maximale Länge eines Pfades in T mit Anfangsknoten v. Die Höhe von T ist die Höhe der Wurzel von T.

Ein vollständiger Binärbaum ist ein Binärbaum mit mindestens drei Knoten, in dem

- (a) jeder Knoten, der kein Blatt ist, genau zwei mittelbare Nachfolger hat,
- (b) alle Pfade von der Wurzel zu Blättern die gleiche Länge haben.

Zeigen Sie, dass ein vollständiger Binärbaum der Höhe $h,\,2^h$ Blätter hat.