Universität Wien

Institut für Informatik

Prof. Wilfried Gansterer, Prof. Claudia Plant

Mathematische Grundlagen der Informatik 1

WiSe 2016/17

Übungsblatt 4: Vektorräume

Aufgabe 4-1

Es sei die Vektormenge $\{u, v, w\}$ linear unabhängig in \Re^n .

- (a) ist die Vektormenge $\{u, v\}$ linear unabhängig?
- (b) ist die Vektormenge $\{3u + 2v, v, u + v + w\}$ linear unabhängig?

Aufgabe 4-2

Sei $f: X \to Y$ eine lineare Abbildung von zwei K-Vektorräumen X und Y. Man zeige: ist f injektiv, so ist das Bild einer linear unabhängigen Teilmenge $A = \{v_1, v_2, \dots, v_n\}$ von X auch linear unabhängig.

Aufgabe 4-3

Es sei V der \Re -Vektorraum mit Basis $\{u_1, u_2\}$ und $f: V \to V$ eine lineare Funktion definiert als:

$$f(u_1) = -3u_1 + 2u_2$$

$$f(u_2) = 4u_1 - u_2$$

Man berechne $f(x_1u_1 + x_2u_2), x_1, x_2 \in \Re$.

Aufgabe 4-4

Es sei $\varphi: X \longrightarrow Y$ eine lineare Abbildung und U ein Unterraum von \Re -Vektorraum X. Man beweise:

$$\varphi^{-1}(\varphi(U)) = U + Ker(\varphi)$$
, where $(U + Ker(\varphi)) = \{w | w = u + k, u \in U, k \in Ker(\varphi)\}$.

Aufgabe 4-5

Es seien
$$v_1 = \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix}$$
, $v_2 = \begin{pmatrix} 2 \\ 1 \\ 3 \end{pmatrix}$, $v_3 = \begin{pmatrix} 4 \\ 2 \\ 6 \end{pmatrix}$, und $w = \begin{pmatrix} 3 \\ 1 \\ 2 \end{pmatrix}$.

- (a) Ist w in $\{v_1, v_2, v_3\}$? Wie viel Vektoren gibt es in $\{v_1, v_2, v_3\}$?
- (b) Wie viele Vektoren gibt es in $Span(v_1, v_2, v_3)$?
- (c) Ist w in $Span(v_1, v_2, v_3)$?

Aufgabe 4-6

Es seien x und y zwei linear unabhängige Vektoren in \Re -Vektorraum V. Man zeige, dass u=ax+by und v=cx+dy linear unabhängig sind nur wenn $ad-bc\neq 0$ (a,b,c,d) sind Skalare).

1

Aufgabe 4-7

Es seien $v_1 = \binom{2}{5}$ und $v_2 = \binom{1}{3}$. Man zeige dass $\{v_1, v_2\}$ ein Span für \Re^2 ist. Man formuliere $\binom{20}{5}$ anhand von $\{v_1, v_2\}$.

Aufgabe 4-8

Man untersuche für welche $t\in\Re$ die Vektoren

$$v_1=\begin{pmatrix}1\\3\\4\end{pmatrix},\quad v_2=\begin{pmatrix}3\\t\\11\end{pmatrix},\quad v_3=\begin{pmatrix}-4\\4\\0\end{pmatrix}$$
 linear abhängig in \Re^3 sind.